947 resultados para Third generation photovoltaics


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Successful anatomic fitting of a total artificial heart (TAH) is vital to achieve optimal pump hemodynamics after device implantation. Although many anatomic fitting studies have been completed in humans prior to clinical trials, few reports exist that detail the experience in animals for in vivo device evaluation. Optimal hemodynamics are crucial throughout the in vivo phase to direct design iterations and ultimately validate device performance prior to pivotal human trials. In vivo evaluation in a sheep model allows a realistically sized representation of a smaller patient, for which smaller third-generation TAHs have the potential to treat. Our study aimed to assess the anatomic fit of a single device rotary TAH in sheep prior to animal trials and to use the data to develop a threedimensional, computer-aided design (CAD)-operated anatomic fitting tool for future TAH development. Following excision of the native ventricles above the atrio-ventricular groove, a prototype TAH was inserted within the chest cavity of six sheep (28–40 kg).Adjustable rods representing inlet and outlet conduits were oriented toward the center of each atrial chamber and the great vessels, with conduit lengths and angles recorded for future analysis. A threedimensional, CAD-operated anatomic fitting tool was then developed, based on the results of this study, and used to determine the inflow and outflow conduit orientation of the TAH. The mean diameters of the sheep left atrium, right atrium, aorta, and pulmonary artery were 39, 33, 12, and 11 mm, respectively. The center-to-center distance and outer-edge-to-outer-edge distance between the atria, found to be 39 ± 9 mm and 72 ± 17 mm in this study, were identified as the most critical geometries for successful TAH connection. This geometric constraint restricts the maximum separation allowable between left and right inlet ports of a TAH to ensure successful alignment within the available atrial circumference.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The role of Bone Tissue Engineering in the field of Regenerative Medicine has been the topic of substantial research over the past two decades. Technological advances have improved orthopaedic implants and surgical techniques for bone reconstruction. However, improvements in surgical techniques to reconstruct bone have been limited by the paucity of autologous materials available and donor site morbidity. Recent advances in the development of biomaterials have provided attractive alternatives to bone grafting expanding the surgical options for restoring the form and function of injured bone. Specifically, novel bioactive (second generation) biomaterials have been developed that are characterised by controlled action and reaction to the host tissue environment, whilst exhibiting controlled chemical breakdown and resorption with an ultimate replacement by regenerating tissue. Future generations of biomaterials (third generation) are designed to be not only osteo- conductive but also osteoinductive, i.e. to stimulate regeneration of host tissues by combining tissue engineer- ing and in situ tissue regeneration methods with a focus on novel applications. These techniques will lead to novel possibilities for tissue regeneration and repair. At present, tissue engineered constructs that may find future use as bone grafts for complex skeletal defects, whether from post-traumatic, degenerative, neoplastic or congenital/developmental “origin” require osseous reconstruction to ensure structural and functional integrity. Engineering functional bone using combinations of cells, scaffolds and bioactive factors is a promising strategy and a particular feature for future development in the area of hybrid materials which are able to exhibit suitable biomimetic and mechanical properties. This review will discuss the state of the art in this field and what we can expect from future generations of bone regeneration concepts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple, effective and innovative approach based on low-pressure, thermally nonequilibrium, high-density inductively coupled plasmas is proposed to rapidly synthesize Si quantum dots (QDs) embedded in an amorphous SiC (a-SiC) matrix at a low substrate temperature and without any commonly used hydrogen dilution. The experimental results clearly demonstrate that uniform crystalline Si QDs with a size of 3-4 nm embedded in the silicon-rich (carbon content up to 10.7at.%) a-SiC matrix can be formed from the reactive mixture of silane and methane gases, with high growth rates of ∼1.27-2.34 nm s-1 and at a low substrate temperature of 200 °C. The achievement of the high-rate growth of Si QDs embedded in the a-SiC without any commonly used hydrogen dilution is discussed based on the unique properties of the inductively coupled plasma-based process. This work is particularly important for the development of the all-Si tandem cell-based third generation photovoltaic solar cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple, effective, and innovative approach based on ion-assisted self-organization is proposed to synthesize size-selected Si quantum dots (QDs) on SiC substrates at low substrate temperatures. Using hybrid numerical simulations, the formation of Si QDs through a self-organization approach is investigated by taking into account two distinct cases of Si QD formation using the ionization energy approximation theory, which considers ionized in-fluxes containing Si3+ and Si1+ ions in the presence of a microscopic nonuniform electric field induced by a variable surface bias. The results show that the highest percentage of the surface coverage by 1 and 2 nm size-selected QDs was achieved using a bias of -20 V and ions in the lowest charge state, namely, Si1+ ions in a low substrate temperature range (227-327 °C). As low substrate temperatures (≤500 °C) are desirable from a technological point of view, because (i) low-temperature deposition techniques are compatible with current thin-film Si-based solar cell fabrication and (ii) high processing temperatures can frequently cause damage to other components in electronic devices and destroy the tandem structure of Si QD-based third-generation solar cells, our results are highly relevant to the development of the third-generation all-Si tandem photovoltaic solar cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The synthesis of thiophene-containing second (G2) and third generation (G3) dendronized macromonomers with methacrylate polymerizable units as well as their corresponding dendronized polymers is reported. The dendrons are prepared from branched thiophene oligomers and are decorated with straight alkyl chains for solubility reasons. The polymerization reactions were done with AIBN as initiator and the polymers were characterized by NMR spectroscopy, elemental analysis and GPC. Molar masses are in the range of 2.2-5.4 × 105 g mol-1 (G2) and 1.3-3.0 × 104 g mol-1 (G3) for different runs. These polymers are investigated by cyclic voltammetry and optical spectroscopy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biomass is an important energy resource for producing bioenergy and growing the global economy whilst minimising greenhouse gas emissions. Many countries, like Australia have a huge amount of biomass with the potential for bioenergy, but non-edible feedstock resources are significantly under-exploited. Hence it is essential to map the availability of these feedstocks to identify the most appropriate bioenergy solution for each region and develop supply chains for biorefineries. Using Australia as a case study,we present the spatial availability and opportunities for second and third generation feedstocks. Considerations included current land use, the presence of existing biomass industries and climatic conditions. Detailed information on the regional availability of biomass was collected from government statistics, technical reports and energy assessments as well as from academic literature. Second generation biofuels have the largest opportunity in New South Wales, Queensland and Victoria (NSW, QLD and VIC) and the regions with the highest potential for microalgae are Western Australia and Northern Territory (WA, NT), based on land use opportunity cost and climate. The approach can be used in other countries with a similar climate. More research is needed to overcome key technical and economic hurdles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The “third-generation” 3D graphene structures, T-junction graphene micro-wells (T-GMWs) are produced on cheap polycrystalline Cu foils in a single-step, low-temperature (270 °C), energy-efficient, and environment-friendly dry plasma-enabled process. T-GMWs comprise vertical graphene (VG) petal-like sheets that seemlessly integrate with each other and the underlying horizontal graphene sheets by forming T-junctions. The microwells have the pico-to-femto-liter storage capacity and precipitate compartmentalized PBS crystals. The T-GMW films are transferred from the Cu substrates, without damage to the both, in de-ionized or tap water, at room temperature, and without commonly used sacrificial materials or hazardous chemicals. The Cu substrates are then re-used to produce similar-quality T-GMWs after a simple plasma conditioning. The isolated T-GMW films are transferred to diverse substrates and devices and show remarkable recovery of their electrical, optical, and hazardous NO2 gas sensing properties upon repeated bending (down to 1 mm radius) and release of flexible trasparent display plastic substrates. The plasma-enabled mechanism of T-GMW isolation in water is proposed and supported by the Cu plasma surface modification analysis. Our GMWs are suitable for various optoelectronic, sesning, energy, and biomedical applications while the growth approach is potentially scalable for future pilot-scale industrial production.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, downscaling models are developed using a support vector machine (SVM) for obtaining projections of monthly mean maximum and minimum temperatures (T-max and T-min) to river-basin scale. The effectiveness of the model is demonstrated through application to downscale the predictands for the catchment of the Malaprabha reservoir in India, which is considered to be a climatically sensitive region. The probable predictor variables are extracted from (1) the National Centers for Environmental Prediction (NCEP) reanalysis dataset for the period 1978-2000, and (2) the simulations from the third-generation Canadian Coupled Global Climate Model (CGCM3) for emission scenarios A1B, A2, B1 and COMMIT for the period 1978-2100. The predictor variables are classified into three groups, namely A, B and C. Large-scale atmospheric variables Such as air temperature, zonal and meridional wind velocities at 925 nib which are often used for downscaling temperature are considered as predictors in Group A. Surface flux variables such as latent heat (LH), sensible heat, shortwave radiation and longwave radiation fluxes, which control temperature of the Earth's surface are tried as plausible predictors in Group B. Group C comprises of all the predictor variables in both the Groups A and B. The scatter plots and cross-correlations are used for verifying the reliability of the simulation of the predictor variables by the CGCM3 and to Study the predictor-predictand relationships. The impact of trend in predictor variables on downscaled temperature was studied. The predictor, air temperature at 925 mb showed an increasing trend, while the rest of the predictors showed no trend. The performance of the SVM models that are developed, one for each combination of predictor group, predictand, calibration period and location-based stratification (land, land and ocean) of climate variables, was evaluated. In general, the models which use predictor variables pertaining to land surface improved the performance of SVM models for downscaling T-max and T-min

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L Amour de loin: The semantics of the unattainable in Kaija Saariaho s opera Kaija Saariaho (born 1952) is one of the most internationally successful Finnish composers there has ever been. Her first opera L Amour de loin (Love from afar, 1999-2000) has been staged all over the world and has won a number of important prizes. The libretto written for L Amour de loin by Amin Malouf (born 1949) sets the work firmly in the culture of courtly love and the troubadours, which flourished in Occitania in the South of France during the Middle Ages. The male lead in the opera is the troubadour Jaufré Rudel, who lived in the twelfth century and is known to have taken part in the Second Crusade in 1147-1148. This doctoral thesis L Amour de loin: The semantics of the unattainable in Kaija Saariaho s opera, which comes within the field of musicology and opera research, examines the dimensions of meaning contained in Kaija Saariaho s opera L Amour de loin. This hermeneutic-semiotic study is the first doctoral thesis dealing with Saariaho to be completed at the University of Helsinki. It is also the first thesis-level study of Saariaho s opera to be completed anywhere in the world. The study focuses on the libretto and music of the opera, that is to say the dramatic text (L Amour de loin 1980), and examines on the one hand the dimensions of meaning produced by the dramatic text and on the other, the way in which they fix the dramatic text in a historical and cultural context. Thus the study helps to answer questions about the dimensions of meaning contained in the dramatic text of the opera and how they can be interpreted. The most important procedural viewpoint is Lawrence Kramer s hermeneutic window (1990), supplemented by Raymond Monelle s semiotic theory of musical topics (2000, 2006) and the philosophical concept of Emmanuel Levinas (1996, 2002) in which the latter acts as an instrument for semantic interpretation to build up an analysis. The analytical section of the study is built around the three characters in the opera, Jaufré Rudel, Clémence the Countess of Tripoli, and the Pilgrim. The study shows that the music of Saariaho, who belongs to the third generation of Finnish modernists, has become distanced from the post-serial aesthetic towards a more diatonic form of expression. There is diatonicity, for instance, in the sonorous individuality of the male lead, which is based on the actual melodies of the historical Jaufré Rudel. The use of outside material in this context is exceptional in the work of Saariaho. At the same time, Saariaho s opera contains a wealth of expressive devices she has used in her earlier work. It became apparent during the study that, as a piece of music, L Amour de loin is a many layered and multi-dimensional work that does not unambiguously represent any single stylistic trend or aesthetic. Despite the composer s post-serial background and its abrasive relationship with opera, L Amour de loin is firmly attached to the tradition of western opera. The analysis based on the theory of musical topics that was carried out in the study, shows that topics referring to death and resurrection, used in opera since the seventeenth century, appear in L Amour de loin. The troubadour topic, mainly identified with the harp, also emerges in the work. The study also shows that the work is firmly attached to the tradition of western opera in other aspects, too, such as the travesti or trouser role played by the Pilgrim, and the idea of deus ex machina derived from Ancient Greek theatre. The study shows that the concept of love based on the medieval practices of courtly love, and the associated longing for another defined by almost 1,000 years of western culture, are both manifested in the semantics of Kaija Saariaho s opera which takes its place in the contemporary music genre.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The application of attenuated vaccines for the prevention of chicken coccidiosis has increased exponentially in recent years. In Eimeria infections, protective immunity is thought to rely on a strong cell mediated response with antibodies supposedly playing a minor role. However, under certain conditions antibodies seem to be significant in protection. Furthermore, antibodies could be useful for monitoring natural exposure of flocks to Eimeria spp. and for monitoring the infectivity of live vaccines. Our objective was to investigate the chicken antibody response to the different parasite lifecycle stages following infection with an attenuated strain of Eimeria tenella. Western blotting analysis of parasite antigens prepared from the lining of caeca infected with the attenuated strain of E. tenella revealed two dominant antigens of 32 and 34 kDa, apparently associated with trophozoites and merozoites that were present at high concentrations between 84 and 132 h post-infection. When cryosections of caeca infected with E. tenella were probed with IgY purified from immune birds the most intense reaction was observed with the asexual stages. Western blotting analysis of proteins of purified sporozoites and third generation merozoites and absorption of stage-specific antibodies from sera suggested that a large proportion of antigens is shared by the two stages. The time-courses of the antibody response to sporozoite and merozoite antigens were similar but varied depending on the inoculation regime and the degree of oocyst recirculation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Artist statement – Artisan Gallery I have a confession to make… I don’t wear a FitBit, I don’t want an Apple Watch and I don’t like bling LED’s. But, what excites me is a future where ‘wearables’ are discreet, seamless and potentially one with our body. Burgeoning E-textiles research will provide the ability to inconspicuously communicate, measure and enhance human health and well-being. Alongside this, next generation wearables arguably will not be worn on the body, but rather within the body…under the skin. ‘Under the Skin’ is a polemic piece provoking debate on the future of wearables – a place where they are not overt, not auxiliary and perhaps not apparent. Indeed, a future where wearables are under the skin or one with our apparel. And, as underwear closets the skin and is the most intimate and cloaked apparel item we wear, this work unashamedly teases dialogue to explore how wearables can transcend from the overt to the unseen. Context Wearable Technology, also referred to as wearable computing or ‘wearables’, is an embryonic field that has the potential to unsettle conventional notions as to how technology can interact, enhance and augment the human body. Wearable technology is the next-generation for ubiquitous consumer electronics and ‘Wearables’ are, in essence, miniature electronic devices that are worn by a person, under clothing, embedded within clothing/textiles, on top of clothing, or as stand-alone accessories/devices. This wearables market is predicted to grow somewhere between $30-$50 billion in the next 5 years (Credit Suisse, 2013). The global ‘wearables’ market, which is emergent in phase, has forecasted predictions for vast consumer revenue with the potential to become a significant cross-disciplinary disruptive space for designers and entrepreneurs. For Fashion, the field of wearables is arguably at the intersection of the second and third generation for design innovation: the first phase being purely decorative with aspects such as LED lighting; the second phase consisting of an array of wearable devices, such as smart watches, to communicate areas such as health and fitness, the third phase involving smart electronics that are woven into the textile to perform a vast range of functions such as body cooling, fabric colour change or garment silhouette change; and the fourth phase where wearable devices are surgically implanted under the skin to augment, transform and enhance the human body. Whilst it is acknowledged the wearable phases are neither clear-cut nor discreet in progression and design innovation can still be achieved with first generation decorative approaches, the later generation of technology that is less overt and at times ‘under the skin’ provides a uniquely rich point for design innovation where the body and technology intersect as one. With this context in mind, the wearable provocation piece ‘Under the Skin’ provides a unique opportunity for the audience to question and challenge conventional notions that wearables need to be a: manifest in nature, b: worn on or next to the body, and c: purely functional. The piece ‘Under the Skin’ is informed by advances in the market place for wearable innovation, such as: the Australian based wearable design firm Catapult with their discreet textile biometric sports tracking innovation, French based Spinali Design with their UV app based textile senor to provide sunburn alerts, as well as opportunities for design technology innovation through UNICEF’s ‘Wearables for Good’ design challenge to improve the quality of life in disadvantaged communities. Exhibition As part of Artisan’s Wearnext exhibition, the work was on public display from 25 July to 7 November 2015 and received the following media coverage: WEARNEXT ONLINE LISTINGS AND MEDIA COVERAGE: http://indulgemagazine.net/wear-next/ http://www.weekendnotes.com/wear-next-exhibition-gallery-artisan/ http://concreteplayground.com/brisbane/event/wear-next_/ http://www.nationalcraftinitiative.com.au/news_and_events/event/48/wear-next http://bneart.com/whats-on/wear-next_/ http://creativelysould.tumblr.com/post/124899079611/creative-weekend-art-edition http://www.abc.net.au/radionational/programs/breakfast/smartly-dressed-the-future-of-wearable-technology/6744374 http://couriermail.newspaperdirect.com/epaper/viewer.aspx RADIO COVERAGE http://www.abc.net.au/radionational/programs/breakfast/wear-next-exhibition-whats-next-for-wearable-technology/6745986 TELEVISION COVERAGE http://www.abc.net.au/radionational/programs/breakfast/wear-next-exhibition-whats-next-for-wearable-technology/6745986 https://au.news.yahoo.com/video/watch/29439742/how-you-could-soon-be-wearing-smart-clothes/#page1

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In technicolor theories the scalar sector of the Standard Model is replaced by a strongly interacting sector. Although the Standard Model has been exceptionally successful, the scalar sector causes theoretical problems that make these theories seem an attractive alternative. I begin my thesis by considering QCD, which is the known example of strong interactions. The theory exhibits two phenomena: confinement and chiral symmetry breaking. I find the low-energy dynamics to be similar to that of the sigma models. Then I analyze the problems of the Standard Model Higgs sector, mainly the unnaturalness and triviality. Motivated by the example of QCD, I introduce the minimal technicolor model to resolve these problems. I demonstrate the minimal model to be free of anomalies and then deduce the main elements of its low-energy particle spectrum. I find the particle spectrum contains massless or very light technipions, and also technibaryons and techni-vector mesons with a high mass of over 1 TeV. Standard Model fermions remain strictly massless at this stage. Thus I introduce the technicolor companion theory of flavor, called extended technicolor. I show that the Standard Model fermions and technihadrons receive masses, but that they remain too light. I also discuss flavor-changing neutral currents and precision electroweak measurements. I then show that walking technicolor models partly solve these problems. In these models, contrary to QCD, the coupling evolves slowly over a large energy scale. This behavior adds to the masses so that even the light technihadrons are too heavy to be detected at current particle accelerators. Also all observed masses of the Standard Model particles can be generated, except for the bottom and top quarks. Thus it is shown in this thesis that, excluding the masses of third generation quarks, theories based on walking technicolor can in principle produce the observed particle spectrum.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wireless technologies are continuously evolving. Second generation cellular networks have gained worldwide acceptance. Wireless LANs are commonly deployed in corporations or university campuses, and their diffusion in public hotspots is growing. Third generation cellular systems are yet to affirm everywhere; still, there is an impressive amount of research ongoing for deploying beyond 3G systems. These new wireless technologies combine the characteristics of WLAN based and cellular networks to provide increased bandwidth. The common direction where all the efforts in wireless technologies are headed is towards an IP-based communication. Telephony services have been the killer application for cellular systems; their evolution to packet-switched networks is a natural path. Effective IP telephony signaling protocols, such as the Session Initiation Protocol (SIP) and the H 323 protocol are needed to establish IP-based telephony sessions. However, IP telephony is just one service example of IP-based communication. IP-based multimedia sessions are expected to become popular and offer a wider range of communication capabilities than pure telephony. In order to conjoin the advances of the future wireless technologies with the potential of IP-based multimedia communication, the next step would be to obtain ubiquitous communication capabilities. According to this vision, people must be able to communicate also when no support from an infrastructured network is available, needed or desired. In order to achieve ubiquitous communication, end devices must integrate all the capabilities necessary for IP-based distributed and decentralized communication. Such capabilities are currently missing. For example, it is not possible to utilize native IP telephony signaling protocols in a totally decentralized way. This dissertation presents a solution for deploying the SIP protocol in a decentralized fashion without support of infrastructure servers. The proposed solution is mainly designed to fit the needs of decentralized mobile environments, and can be applied to small scale ad-hoc networks or also bigger networks with hundreds of nodes. A framework allowing discovery of SIP users in ad-hoc networks and the establishment of SIP sessions among them, in a fully distributed and secure way, is described and evaluated. Security support allows ad-hoc users to authenticate the sender of a message, and to verify the integrity of a received message. The distributed session management framework has been extended in order to achieve interoperability with the Internet, and the native Internet applications. With limited extensions to the SIP protocol, we have designed and experimentally validated a SIP gateway allowing SIP signaling between ad-hoc networks with private addressing space and native SIP applications in the Internet. The design is completed by an application level relay that permits instant messaging sessions to be established in heterogeneous environments. The resulting framework constitutes a flexible and effective approach for the pervasive deployment of real time applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis presents a novel application of x-ray Compton scattering to structural studies of molecular liquids. Systematic Compton-scattering experiments on water have been carried out with unprecedented accuracy at third-generation synchrotron-radiation laboratories. The experiments focused on temperature effects in water, the water-to-ice phase transition, quantum isotope effects, and ion hydration. The experimental data is interpreted by comparison with both model computations and ab initio molecular-dynamics simulations. Accordingly, Compton scattering is found to provide unique intra- and intermolecular structural information. This thesis thus demonstrates the complementarity of the technique to traditional real-space probes for studies on the local structure of water and, more generally, molecular liquids.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Models of Maximal Flavor Violation (MxFV) in elementary particle physics may contain at least one new scalar SU$(2)$ doublet field $\Phi_{FV} = (\eta^0,\eta^+)$ that couples the first and third generation quarks ($q_1,q_3$) via a Lagrangian term $\mathcal{L}_{FV} = \xi_{13} \Phi_{FV} q_1 q_3$. These models have a distinctive signature of same-charge top-quark pairs and evade flavor-changing limits from meson mixing measurements. Data corresponding to 2 fb$^{-1}$ collected by the CDF II detector in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV are analyzed for evidence of the MxFV signature. For a neutral scalar $\eta^0$ with $m_{\eta^0} = 200$ GeV/$c^2$ and coupling $\xi_{13}=1$, $\sim$ 11 signal events are expected over a background of $2.1 \pm 1.8$ events. Three events are observed in the data, consistent with background expectations, and limits are set on the coupling $\xi_{13}$ for $m_{\eta^0} = 180-300$ GeV/$c^2$.