123 resultados para Thermostability


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study reports on the effects of growth temperature on the secretion and some properties of the xylanase and beta-xylosidase activities produced by a thermotolerant Aspergillus phoenicis. Marked differences were observed when the organism was grown on xylan-supplemented medium at 25 degreesC or 42 degreesC. Production of xylanolytic enzymes reached maximum levels after 72 h of growth at 42 degreesC; and levels were three- to five-fold higher than at 25 degreesC. Secretion of xylanase and beta-xylosidase was also strongly stimulated at the higher temperature. The optimal temperature was 85 degreesC for extracellular and 90 degreesC for intracellular beta-xylosidase activity, independent of the growth temperature. The optimum temperature for extracellular xylanase increased from 50 degreesC to 55 degreesC when the fungus was cultivated at 42 degreesC. At the higher temperature, the xylanolytic enzymes produced by A. phoenicis showed increased thermo stability, with changes in the profiles of pH optima. The chromatographic profiles were distinct when samples obtained from cultures grown at different temperatures were eluted from DEAE-cellulose and Biogel P-60 columns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

beta-Glucosidase from the fungus Thermoascus aurantiacus grown oil semi-solid fermentation medium (using ground corncob as substrate) was partially purified in 5 steps - ultrafiltration, ethanol precipitation, gel filtration and 2 anion exchange chromatography runs, and characterized. After the first anion exchange chromatography, beta-glucosidase activity was eluted in 3 peaks (Gl-1, Gl-2, Gl-3). Only the Gl-2 and Gl-3 fractions were adsorbed on the gel matrix. Gl-2 and Gl-3 exhibited optimum pH at 4.5 and 4.0, respectively. The temperature optimum of both glucosidases was at 75-80 degreesC. The pH stability of Gl-2 (4.0-9.0) was higher than Gl-3 (5.5-8.5); both enzyme activities showed similar patterns of thermostability. Under conditions of denaturing gel chromatography the molar mass of Gl-2 and Gl-3 was 175 and 157 kDa, respectively. Using 4-nitrophenyl beta-D-glucopyranoside as substrate, K-m, values of 1.17 +/- 0.35 and 1.38 +/- 0.86 mmol/L were determined for Gl-2 and Gl-3, respectively. Both enzymes were inhibited by Ag+ and stimulated by Ca2+.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pectin lyase (Pl) and polygalacturonase (Pg) production by Thermoascus aurantiacus 179-5 was carried out by means of solid-state determination using orange bagasse and wheat bran as a carbon sources. Pg and Pl had optimum activity at pH 5.0 and 10.5 respectively. Maximal activity of the enzymes were determined at 65 °C. Pg was stable in the acidic to neutral pH range and at 60 °C for 1 h. whereas Pl was stable at acidic pH and at 60 °C for 5 h. © 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

β-Glucosidase from the fungus Thermoascus aurantiacus grown on semi-solid fermentation medium (using ground corncob as substrate) was partially purified in 5 steps-ultrafiltration, ethanol precipitation, gel filtration and 2 anion exchange chromatography runs, and characterized. After the first anion exchange chromatography, β-glucosidase activity was eluted in 3 peaks (Gl-1, Gl-2, Gl-3). Only the Gl-2 and Gl-3 fractions were adsorbed on the gel matrix. Gl-2 and Gl-3 exhibited optimum pH at 4.5 and 4.0, respectively. The temperature optimum of both glucosidases was at 75-80°C. The pH stability of Gl-2 (4.0-9.0) was higher than Gl-3 (5.5-8.5); both enzyme activities showed similar patterns of thermostability. Under conditions of denaturing gel chromatography the molar mass of Gl-2 and Gl-3 was 175 and 157 kDa, respectively. Using 4-nitrophenyl β-D-glucopyranoside as substrate, Km values of 1.17 ± 0.35 and 1.38 ± 0.86 mmol/L were determined for Gl-2 and Gl-3, respectively. Both enzymes were inhibited by Ag+ and stimulated by Ca2+.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The alkalophilic Bacillus circulans D1 was isolated from decayed wood. It produced high levels of extracellular cellulase-free xylanase. The enzyme was thermally stable up to 60°C, with an optimal hydrolysis temperature of 70°C. It was stable over a wide pH range (5.5-10.5), with an optimum pH at 5.5 and 80% of its activity at pH 9.0. This cellulase-free xylanase preparation was used to biobleach kraft pulp. Enzymatic treatment of kraft pulp decreased chlorine dioxide use by 23 and 37% to obtain the same kappa number (κ number) and brightness, respectively. Separation on Sephadex G-50 isolated three fractions with xylanase activity with distinct molecular weights.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the drawing, construction and optimization of a device, which can be used to obtain single crystals of different metallic materials with melting point from 550 to 1050°C. Components of ease obtaining and of low cost were used. The device was based on the modified Bridgman technique and it was used to obtain single crystals of copper-based alloys. The temperature axial profiles and a difference less then 1% in the temperature between the wall and the center of the ceramic tube in the critical region for obtaining single crystals of good quality indicated that the oven presents a good thermal stability. Single crystals of CuZnAl and CuAlAg alloys of good quality were growth and characterized using optical microscopy and Laüe X-ray back reflection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A strain of Aspergillus giganteus cultivated in a medium with xylan produced two xylanases (xylanase I and II) which were purified to homogeneity. Their molar mass, estimated by SDS-PAGE, were 21 and 24 kDa, respectively. Both enzymes are glycoproteins with 50°C temperature optimum; optimum pH was 6.0-6.5 for xylanase I and 6.0 for xylanase II. At 50°C xylanase I exhibited higher thermostability than xylanase II. Hg2+, Cu 2+ and SDS were strong inhibitors, 1,4-dithiothreitol stimulated the reaction of both enzymes. Both xylanases are xylan-specific; kinetic parameters indicated higher efficiency in the hydrolysis of oat spelts xylan. In hydrolysis of this substrate, xylotriose, xylotetraose and larger xylooligosaccharides were released and hence the enzymes were classified as endoxylanases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two extracellular xylanases produced by the thermotolerant fungus Aspergillus caespitosus grown in sugar cane bagasse were purified and characterized. Estimated molecular masses were 26.3 and 27 kDa (xyl I); 7.7 and 17.7 kDa (xyl II) for gel filtration and SDS-PAGE, respectively. Optimal temperature for both xylanases was 50-55°C. Optimal pH was 6.5-7.0 for xyl I, and 5.5-6.5 for xyl II. The thermostability (T half) at 55°C was 27.3 min (xyl I) and >90 min (xyl II). Xylanase activity was inhibited by several ions. β-mercaptoethanol activated 59 and 102% xyl I and xyl II activities, respectively. These enzymes preferentially hydrolyzed birchwood xylan, and the K m and V max values were 2.5 mg/ml and 1679 U/mg protein (xyl I), and 3.9 mg/ml and 113 U/mg protein (xyl II). The action of both xylanases mainly that of xyl II, on kraft pulp reduced kappa number and increased pulp viscosity. © 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A newly-isolated thermophilic strain of the zygomycete fungus Rhizomucor pusillus 13.36 produced highly active dextrinogenic and saccharogenic enzymes. Cassava pulp was a good alternative substrate for amylase production. Dextrinogenic and saccharogenic amylases exhibited optimum activities at a pH of 4.0-4.5 and 5.0 respectively and at a temperature of 75°C. The enzymes were highly thermostable, with no detectable loss of saccharogenic or dextrinogenic activity after 1 h and 6 h at 60°C, respectively. The saccharogenic activity was inhibited by Ca2+ while the dextrinogenic was indifferent to this ion. Both activities were inhibited by Fe2+ and Cu2+ Hydrolysis of soluble starch by the crude enzyme yielded 66% glucose, 19.5% maltose, 7.7% maltotriose and 6.6% oligosaccharides. Copyright © 2005, The Microbiological Society of Korea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple, rapid, selective and specific high performance liquid chromatographic (HPLC) method for quantitative analysis of the triamcinolone in polylactide-co-glycolide acid (PLGA) microparticles was developed. The chromatographic parameters were reversed-phase C18 column, 250mm x 4.6mm, with particle size 5 μm. The column oven was thermostated at 35°C ± 2°C. The mobile phase was methanol/water 45:55 (v/v) and elution was isocratic at a flow-rate of 1 mL.mL-1. The determinations were performed using a UV-Vis detector at 239 nm. The injected sample volume was 10 μL. The standard curve was linear (r2 > 0.999) in the concentration range 100-2500 ng.mL-1. The method showed adequate precision, with a relative standard deviation (RSD) was smaller than 3%. The accuracy was analyzed by adding a standard drug and good recovery values were obtained for all drug concentrations used. The method showed specificity and selectivity with linearity in the working range and good precision and accuracy, making it very suitable for quantitation of triamcinolone in PLGA microparticles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work was aimed at evaluating the antioxidant activity of rosemary extract added to soybean oil in thermoxidation conditions. Purified soybean oil, refined soybean oil and refined soybean oil containing 1,000 mg/kg rosemary extract were heated at 180°C. The oxidation of the samples was evaluated after 0, 2.5, 5, 7.5 and 10 hours of thermoxidation by means of oxidative stability determination, total polar compounds and conjugated dienes. The purified oil differed significantly from the refined oil, mainly in relation to oxidative stability due the removal of the natural antioxidants. Rosemary extract presented antioxidant effects at high temperatures. After 10 hours of heating, 1,000 mg/kg rosemary extract added to the refined soybean oil significantly increased the oil oxidative stability from 7.52 to 13.5 hours and decreased the formation of polymers and decomposing products measured through the polar rates from 17.35 to 7.99%. The build up of primary oxidation products gauged through diene rates also decreased from 1.61 to 0.80%. Rosemary extract could be recommended as an alternative antioxidant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several beetle luciferases have been cloned and sequenced. However, most studies on structure and function relationships and bioanalytical applications were done with firefly luciferases, which are pH sensitive. Several years ago we cloned Pyrearinus termitilluminans larval click beetle luciferase, which displays the most blue-shifted bioluminescence among beetle luciferases and is pH insensitive. This enzyme was expressed in E. coli, purified, and its properties investigated. This luciferase shows slower luminescence kinetics, KM values comparable to other beetle luciferases and high catalytic constant. Fluorescence studies with 8-anilino-1-naphtalene-sulfonic acid (1,8-ANS) and modeling studies suggest that the luciferin binding site of this luciferase is very hydrophobic, supporting the solvent and orientation polarizability effects as determining mechanisms for bioluminescence colors. Although pH insensitive in the range between pH 6-8, at pH 10 this luciferase displays a remarkable red-shift and broadening of the bioluminescence spectrum. Modeling studies suggest that the residue C312 may play an important role in bioluminescence color modulation. Compared to other beetle luciferases, Pyrearinus termitilluminans luciferase also displays higher thermostability and sustained luminescence in a bacterial cell environment, which makes this luciferase particularly suitable for in vivo cell analysis and bioimaging. © The Royal Society of Chemistry and Owner Societies 2009.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial β-glucosidases have been used for the enhancement of wine aroma. Nevertheless, few enzymes are active in the conditions of winemaking. In this work, the production of a β-glucosidase by an Aureobasidium pullulans strain (Ap-β-gl) isolated from grape ecosystems was evaluated. The maximum enzymatic synthesis using submerged fermentation was after 96 h of growth in complex media containing 20 g/L of cellobiose as the sole carbon source. The crude enzyme (Ap-β-gl) showed optimal pH at 5.5 and two peaks of optimum temperature (at 45 and 70 C). It showed a wide range of pH stability, stability at low temperatures, and tolerance to ethanol, showing suitable characteristics for winemaking conditions. The hydrolysis of glycosidic terpenes by Ap-β-gl was studied, and its ability to efficiently release free terpenols was demonstrated by gas chromatography/mass spectrometry. The enzymatic treatment notably increased the amount of monoterpenes, showing good prospects for its potential application for the development of aroma in wines. © 2012 Springer Science+Business Media New York.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tannases have attracted wider attention because of their biotechnological potential, especially enzymes from filamentous fungi and other microorganisms. However, the biodiversity of these microorganisms has been poorly explored, and few strains were identified for tannase production and characterization. This article describes the production, purification and characterization of a glucose- and solvent-tolerant extracellular tannase from Aspergillus phoenicis. High enzymatic levels were obtained in Khanna medium containing tannic acid up to 72 h at 30 °C under 100 rpm. The purified enzyme with 65% of carbohydrate content had an apparent native molecular mass of 218 kDa with subunits of 120 kDa and 93 kDa and was stable at 50 °C for 1 h. Optima of temperature and pH were 60 °C and 5.0-6.5, respectively. The enzyme was not affected significantly by most ions, detergents and organic solvents. While glucose did not affect the tannase activity, the addition of a high concentration of gallic acid did. The Km values were 1.7 mM (tannic acid), 14.3 mM (methyl-gallate) and 0.6 mM (propyl-gallate). The enzyme was able to catalyze the transesterification reaction to produce propyl-gallate. All biochemical properties suggest the biotechnological potential of the glucose- and solvent-tolerant tannase from A. phoenicis. © 2012 Elsevier B.V. All rights reserved.