992 resultados para Thermal quality


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deep level defects in as-grown and annealed SI-InP samples were investigated by thermally stimulated current spectroscopy. Correlations between electrical property, compensation ratio, thermal stability and deep defect concentration in SI-InP were revealed. An optimized crystal growth condition for high quality SI-InP was demonstrated based on the experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Schottky behaviour of Ni/Au contact on n-GaN was investigated under various annealing conditions by current-voltage (I-V) measurements. A non-linear fitting method was used to extract the contact parameters from the I-V characteristic curves. Experimental results indicate that high quality Schottky contact with a barrier height and ideality factor of 0.86 +/- 0.02 eV and 1.19 +/- 0.02 eV, respectively, can be obtained under 5 min annealing at 600degreesC in N-2 ambience.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel pulsed rapid thermal processing (PRTP) method has been used for realizing solid-phese crystallization of amorphous silicon films prepared by plasma-enhanced chemical vapour deposit ion. The microstructure and surface morphology of the crystallized films were investigated using x-ray diffraction and atomic Force microscopy. The results indicate that PRTP is a suitable post-crystallization technique for fabricating large-area polycrystalline silicon films with good structural quality, such as large grain size, small lattice microstrain and smooth surface morphology on low-cost glass substrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the effect of rapid thermal annealing (RTA) on GaInNAs/GaAs quantum wells (QWs) grown by molecular-beam epitaxy using a dc plasma as the N source. It was found that RTA at low temperature (LT, 650 degrees C) and high temperature (HT, 900 degrees C) could both improve the QW quality significantly. To clarify the mechanism of quality improvement by RTA, a magnetic field perpendicular to the path of the N plasma flux was applied during the growth of the GaInNAs layers for the sake of comparison. It was found that LT-RTA mainly removed dislocations at interfaces related to the ion bombardment, whereas, HT-RTA further removed dislocations originating from the growth. LT-RTA caused only a slight blueshift of photoluminescence peak wavelength, probably due to defect-assisted interdiffusion of In-Ga at the QW interfaces. The blueshift caused by HT-RTA, on the other hand, was much larger. It is suggested that this is due to the fast defect-assisted diffusion of N-As at the QW interfaces. As defects are removed by annealing, the diffusion of In-Ga at interfaces would be predominant. (C) 2000 American Institute of Physics. [S0003- 6951(00)01535-7].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An improved pulsed rapid thermal annealing method has been used to crystallize amorphous silicon films prepared by PECVD. The solid-phase crystallization and dopant activation process can be completed with time-temperature budgets such as 10 cycles of 60-s 550 degrees C thermal bias/l-s 850 degrees C thermal pulse. A mean grain size more than 1000 Angstrom and a Hall mobility of 24.9 cm(2)/V s are obtained in the crystallized films. The results indicate that this annealing method possesses the potential for fabricating large-area and good-quality polycrystalline silicon films on low-cost glass substrate. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Raman scattering, photoluminescence (PL), and nuclear reaction analysis (MA) have been employed to investigate the effects of rapid thermal annealing (RTA) on GaN films grown on sapphire (0001) substrates by gas-source molecular-beam epitaxy, The Raman spectra showed the presence of the E-2 (high) mode of GaN and shift of this mode from 572 to 568 cm(-1) caused by annealing. The results showed that RTA has a significant effect on the strain relaxation caused by the lattice and thermal expansion misfit between the GaN epilayer and the substrate. The PL peak exhibited a blueshift in its energy position and a decrease in the full width at half maximum after annealing, indicating an improvement in the optical quality of the film. Furthermore, a green luminescence appeared after annealing and increased in intensity with increasing annealing time. This effect was attributed to H concentration variation in the GaN film, which was measured by NRA. A high H concentration exists in as-grown GaN, which can neutralize the deep level, and the H-bonded complex dissociates during RTA, This leads to the appearance of a luminescent peak in the PL spectrum. (C) 1998 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of rapid thermal annealing (RTA) in a Nz ambient up to 900 degrees C has been investigated for GaN films grown on sapphire(0 0 0 1) substrates. Raman spectra, X-ray diffractometry and Hall-effect studies were performed for this purpose. The Raman spectra show the presence of the E-2 (high) mode and a shift in the wave number of this mode with respect to the annealing processing. This result suggests the presence and relaxation of residual stress due to thermal expansion misfit in the films which are confirmed by X-ray measurements and the structure quality of GaN epilayer was improved. Furthermore, the electron mobility increased at room temperature with respect to decrease of background electron concentration after RTA. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the temperature dependence of photoluminescence (PL) properties of a number of InAs/GaAs heterostructures with InAs layer thickness ranging from 0.5 monolayer (ML) to 3 ML. The temperature dependence of the InAs exciton energy and linewidth was found to display a significant difference when the InAs layer thickness is smaller or larger than the critical thickness around 1.7 ML, indicating spontaneous formation of quantum dots (QDs). A model, involving exciton recombination and thermal activation and transfer, is proposed to explain the experimental data. In the PL thermal quenching study, the measured thermal activation energies of different samples demonstrate that the InAs wetting layer may act as a barrier for thermionic emission of carriers in high quality InAs multilayers, while in InAs monolayers and submonolayers the carriers are required to overcome the GaAs barrier to thermally escape from the localized states. (C) 1998 Academic Press Limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deep level defects in as-grown and annealed SI-InP samples were investigated by thermally stimulated current spectroscopy. Correlations between electrical property, compensation ratio, thermal stability and deep defect concentration in SI-InP were revealed. An optimized crystal growth condition for high quality SI-InP was demonstrated based on the experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alpha olefins are mainly produced from paraffin cracking in China, but their quality is not good because of bad quality of cracking feed and outdated technology. The technology of paraffin once-through cracking, paraffin recycle cracking of removing the heavy fraction after wax vaporizing and that of removing the heavy fraction before wax vaporizing were investigated in this paper. It was found that the technology of paraffin recycle cracking of removing the heavy fraction before wax vaporizing is new and better under the same operating conditions. Using hard paraffin (mp 54-56 degrees C) as feed, the high-quality alpha olefins products (C-5-C-21) containing more than 97 wt% of olefins and more than 88 wt% of alpha olefins are produced under optimum process conditions, which are a steam to paraffin ratio of 15 wt%, process temperature of 600 degrees C, low hydrocarbon partial pressure and residence time of 2 s. In addition, with the technology of the second injecting steam in ethylene cracking used in paraffin cracking, producing coke in paraffin cracking furnace has been markedly reduced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the temperature dependence of photoluminescence (PL) properties of a number of self-organized InAs/GaAs heterostructures with InAs layer thickness ranging from 0.5 to 3 ML. The temperature dependence of InAs exciton emission and linewidth was found to display a significant difference when the InAs layer thickness is smaller or larger than the critical thickness around 1.7 ML. The fast redshift of PL energy and an anomalous decrease of linewidth with increasing temperature were observed and attributed to the efficient relaxation process of carriers in multilayer samples, resulting from the spread and penetration of the carrier wave functions in coupled InAs quantum dots. The measured thermal activation energies of different samples demonstrated that the InAs wetting layer may act as a barrier for the thermionic emission of carriers in high-quality InAs multilayers, while in InAs monolayers and submonolayers the carriers are required to overcome the GaAs barrier to escape thermally from the localized states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemically vapour deposited silicon on sapphire (SOS) films 0.25 mu m thick were implanted with Si-28(+) and recrystallized in solid phase by furnace annealing (FA) and IR rapid thermal annealing (RTA) in our laboratory. An improvement in crystalline quality can be obtained using both annealing procedures. After FA, it is hard to retain the intrinsic high resistivity value(10(4)-10(5) Ohm cm) observed in as-grown SOS films, so the improvement process cannot be put to practical use effectively. However, it is demonstrated that by properly adjusting the implantation and RTA conditions, significant improvements in both film quality and film autodoping can be accomplished. This work describes a modified double solid phase epitaxy process in which the intrinsic high resistivities of the as grown SOS films are retained. The mechanism of suppression of Al autodoping is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new solvothermal route has been developed for synthesizing the size-controlled CdSe nanocrystals with relatively narrow size distribution, and the photoluminescence (PL) quantum yields (QYs) of the nanocrystals can reach 5-10%. Then the obtained CdSe nanocrystals served as cores to prepare the core/shell CdSe/CdS nanocrystals via a two-phase thermal approach, which exhibited much higher PL QYs (up to 18-40%) than the CdSe core nanocrystals. The nanocrystal samples were characterized by ultraviolet-visible (UV-vis) absorption spectra, PL spectra, wide-angle Xray diffraction (WAXD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The future success of many electronics companies will depend to a large extent on their ability to initiate techniques that bring schedules, performance, tests, support, production, life-cycle-costs, reliability prediction and quality control into the earliest stages of the product creation process. Earlier papers have discussed the benefits of an integrated analysis environment for system-level thermal, stress and EMC prediction. This paper focuses on developments made to the stress analysis module and presents results obtained for an SMT resistor. Lifetime predictions are made using the Coffin-Manson equation. Comparison with the creep strain energy based models of Darveaux (1997) shows the shear strain based method to underestimate the solder joint life. Conclusions are also made about the capabilities of both approaches to predict the qualitative and quantitative impact of design changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study of the external, loaded and unloaded quality factors for frequency selective surfaces (FSSs) is presented. The study is focused on THz frequencies between 5 and 30 THz, where ohmic losses arising from the conductors become important. The influence of material properties, such as metal thickness, conductivity dispersion and surface roughness, is investigated. An equivalent circuit that models the FSS in the presence of ohmic losses is introduced and validated by means of full-wave results. Using both full-wave methods as well as a circuit model, the reactive energy stored in the vicinity of the FSS at resonance upon plane-wave incidence is presented. By studying a doubly periodic array of aluminium strips, it is revealed that the reactive power stored at resonance increases rapidly with increasing periodicity. Moreover, it is demonstrated that arrays with larger periodicity-and therefore less metallisation per unit area-exhibit stronger thermal absorption. Despite this absorption, arrays with higher periodicities produce higher unloaded quality factors. Finally, experimental results of a fabricated prototype operating at 14 THz are presented.