975 resultados para Th1-type immune response
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The infection of mice with the wild-type (WT) strain of Y. pseudotuberculosis did not induce polyclonal activation of B lymphocytes. Suppression in the production of certain isotypes of Ig was observed, provoked mainly by YopH, YopJ and YpkA. The WT strain induced a progressive increase in the serum-specific IgG, which peaked after 4 weeks after infection, IgM being produced only after 1 week. Autoantibodies against phosphorylcholine, myelin, thyroglobulin and cardiolipin could be detected in the serum of mice infected with the WT strain. The infection of mice provoked suppression in the production of immunoglobulins by splenic B cells and that YopH, YopJ and YpkA must be involved here.
Resumo:
The immune response to leishmaniasis can result in a polarization of a subpopulation of T lymphocytes, which leads to a different cell phenotype and results in immune protection or exacerbation of the disease. Leishmanias persist in the body both in asymptomatic infections and after treatment, representing risks in terms of immunosuppression. The objective of this study was to evaluate the effects of infection and immunosuppression by dexamethasone associated with pentoxifylline on animal weight, spleen weight, the parasitic load in the spleen and liver, as well as the production of IFN-gamma and IL-10 in spleen cell culture of Balb/c mice infected with Leishmania chagasi. The infection did not alter animal weight gain, but spleen weight and size increased. The immunosuppression, induced by dexamethasone associated with pentoxifylline, affected animal weight gain and weight and size of the spleen (in infected and not infected animals). The immunosuppression did not significantly alter the course of the parasite burden in the spleen and liver. Dexamethasone and pentoxifylline affected the studied cytokine production, but not influenced on Th1/Th2 response in infected animals.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We studied the correlation among cellular immune response, the pattern of lung granulomatous lesions and alterations in spleen lymphoid structure in Swiss mice inoculated intravenously with Paracoccidioides brasiliensis strain 18. The animals were evaluated at 24, 48 and 96 h after infection and further studied weekly for 18 weeks by: (i) the macrophage migration inhibition test with phytohemagglutinin (PHA) and P. brasiliensis antigen (PbAg); and (ii) histopathology of the lung and spleen lesions. One group of animals was gamma -irradiated (8 Gy), infected under the same conditions and evaluated for the pattern of lung granulomatous lesions and spleen lymphoid structure at 24, 48 and 96 h after infection. During the first week of infection, the non-irradiated animals presented a positive response to PHA and PbAg, compact granulomas in the lungs and a typical hyperplasia of the spleen white pulp. However, from weeks 2 to 5, a depression of the cell-mediated immunity (CMI) response to PHA and PbAg was observed in association with granulomas presenting only large mononuclear cells and lacking both giant cells and a peripheral halo of small mononuclear cells. This pattern of granuloma formation was similar to that seen in gamma -irradiated animals, whose cells involved in CMI were absent. After week 7, the non-irradiated animals showed granulomas characterized by the presence of giant cells and a peripheral halo of small mononuclear cells. This type of granuloma was formed concomitantly with recovery of the CMI and of the lymphoid structure of the spleen. The results showed a correlation among granulomas composed of large mononuclear cells, hypoplasia of the splenic tissue and impaired CMI. This correlation indicated that although granuloma morphogenesis per se does not depend on the activation of CMI, this response is important at later stages during modulation of the cellular composition of the granulomas.
Resumo:
The specific delayed-type hypersensitivity (DTH) response was evaluated in resistant (A/SN) and susceptible (B10.A) mice intraperitoneally infected with yeasts from a virulent (Pb18) or from a non-virulent (Pb265) Paracoccidioides brasiliensis isolates. Both strains of mice were footpad challenged with homologous antigens. Pb18 infected A/SN mice developed an evident and persistent DTH response late in the course of the disease (90th day on) whereas B10.A animals mounted a discrete and ephemeral DTH response at the 14th day post-infection. A/SN mice infected with Pb265 developed cellular immune responses whereas B10.A mice were almost always anergic. Histological analysis of the footpads of infected mice at 48 hours after challenge showed a mixed infiltrate consisting of predominantly mononuclear cells. Previous infection of resistant and susceptible mice with Pb18 did not alter their DTH responses against heterologous unrelated antigens (sheep red blood cells and dinitrofluorobenzene) indicating that the observed cellular anergy was antigen-specific. When fungal related antigens (candidin and histoplasmin) were tested in resistant mice, absence of cross-reactivity was noted. Thus, specific DTH responses against P. brasiliensis depend on both the host's genetically determined resistance and the virulence of the fungal isolate.
Resumo:
Rhodococcus equi is a Gram-positive, facultative intracellular bacterium which infects macrophages and causes rhodococcal pneumonia and enteritis in foals. Recently, this agent has been recognized as an opportunistic pathogen for immunocompromised humans. Several murine experimental models have been used to study R. equi infection. High (H IV-A) and Low (L IV-A) antibody (Ab)-producers mice were obtained by bi-directional genetic selections for their ability to produce antibodies against sheep and human erythrocytes (Selection IV-A). These lines maintain their phenotypes of high and low responders also for other antigens than those of selection (multispeciflc effect). A higher macrophage activity in L IV-A mice has been described for several intracellular infectious agents, which could be responsible for their intense macrophage antigens (Ag)-handling and low Ab production. Due to these differences, L IV-A mice were found to exhibit a better performance to trigger an effective immune response towards intracellular pathogens. The objective of this work was to characterize the immune response of Selection IV-A against R. equi. H IV-A and L IV-A mice were infected with 2.0 × 10 6 CFU of ATCC 33701 +R. equi by intravenous route. With regards to bacterial clearance and survival assays, L IV-A mice were more resistant than H IV-A mice to virulent R. equi. L IV-A mice presented a higher hydrogen peroxide (H 2O 2) and nitric oxide (NO) endogenous production by splenic macrophages than H IV-A mice. L IV-A expressed the most intense cellular response, available by the Delayed-Type Hypersensitivity (DTH) reaction, which activated macrophages and produced more H 2O 2 and NO. The three times higher specific antibodies titres in H IV-A indicated that Selection IV-A maintained the multispecific effect and the polygenic control of humoral and cellular responses also to R. equi.
Resumo:
Background: Vaccination of neonates is generally difficult due to the immaturity of the immune system and consequent higher susceptibility to tolerance induction. Genetic immunization has been described as an alternative to trigger a stronger immune response in neonates, including significant Th1 polarization. In this investigation we analysed the potential use of a genetic vaccine containing the heat shock protein (hsp65) from Mycobacterium leprae (pVAXhsp65) against tuberculosis (TB) in neonate mice. Aspects as antigen production, genomic integration and immunogenicity were evaluated. Methods: Hsp65 message and genomic integration were evaluated by RT-PCR and Southern blot, respectively. Immunogenicity of pVAXhsp65 alone or combined with BCG was analysed by specific induction of antibodies and cytokines, both quantified by ELISA. Results: This DNA vaccine was transcribed by muscular cells of neonate mice without integration into the cellular genome. Even though this vaccine was not strongly immunogenic when entirely administered (three doses) during early animal's life, it was not tolerogenic. In addition, pVAXhsp65 and BCG were equally able to prime newborn mice for a strong and mixed immune response (Th1 + Th2) to pVAXhsp65 boosters administered later, at the adult life. Conclusion: These results suggest that pVAXhsp65 can be safely used as a priming stimulus in neonate animals in prime-boost similar strategies to control TB. However, priming with BCG or pVAXhsp65, directed the ensuing immune response triggered by an heterologous or homologous booster, to a mixed Th1/Th2 pattern of response. Measures as introduction of IL-12 or GM-CSF genes in the vaccine construct or even IL-4 neutralization, are probably required to increase the priming towards Th1 polarization to ensure control of tuberculosis infection. © 2007 Pelizon et al; licensee BioMed Central Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Methods. One hundred and twenty patients (RA, n = 41; AS, n = 57; PsA, n = 22) on anti-TNF agents (monoclonal, n = 94; soluble receptor, n = 26) were compared with 116 inflammatory arthritis patients under DMARDs and 117 healthy controls. Seroprotection, seroconversion (SC), geometric mean titre, factor increase in geometric mean titre and adverse events were evaluated 21 days after vaccination. Results. After immunization, SC rates (58.2% vs 74.3%, P = 0.017) were significantly lower in SpA patients receiving anti-TNF therapy, whereas no difference was observed in RA patients receiving this therapy compared with healthy controls (P = 0.067). SpA patients receiving mAbs (infliximab/adalimumab) had a significantly lower SC rate compared with healthy controls (51.6% vs 74.3%, P = 0.002) or those on DMARDs (51.6% vs 74.7%, P = 0.005), whereas no difference was observed for patients on etanercept (86.7% vs 74.3%, P = 0.091). Further analysis of non-seroconverting and seroconverting SpA patients revealed that the former group had a higher mean age (P = 0.003), a higher frequency of anti-TNF (P = 0.031) and mAbs (P = 0.001) and a lower frequency of MTX (P = 0.028). In multivariate logistic regression, only older age (P = 0.015) and mAb treatment (P = 0.023) remained significant factors for non-SC in SpA patients. Conclusion. This study revealed a distinct disease pattern of immune response to the pandemic influenza vaccine in inflammatory arthritis patients receiving anti-TNF agents, illustrated by a reduced immunogenicity solely in SpA patients using mAbs. Trial Registration: ClinicalTrials.gov, ext-link-type="uri" xlink:href="www.clinicaltrials.gov" xmlns:xlink="http://www.w3.org/1999/xlink">www.clinicaltrials.gov, NCT01151644.
Resumo:
The expression of Langerhans cell (LC) and dermal dendritic cell (dDC) as well as T CD4+ and CD8+ immune responses was evaluated in the skin of BALB/c mice experimentally infected by L. (L.) amazonensis (La) and L. (V.) braziliensis (Lb). At 4th and 8th weeks post infection (PI), skin biopsies were collected to determine the parasite load and CD207+, CD11c+, CD4+, CD8+, iNOS+ cellular densities. Cytokine (IFN-?, IL-4 and IL-10) profiles were also analysed in draining lymph node. At 4th week, the densities of CD207+ and CD11c+ were higher in the La infection, while in the Lb infection, these markers revealed a significant increase at 8th week. At 4th week, CD4+ and CD8+ were higher in the La infection, but at 8th week, there was a substantial increase in both markers in the Lb infection. iNOS+ was higher in the Lb infection at 4th and 8th weeks. In contrast, the parasite load was higher in the La infection at 4th and 8th weeks. The concentration of IFN-? was higher in the Lb infection, but IL-4 and IL-10 were higher in the La infection at 4th and 8th weeks. These results confirm the role of the Leishmania species in the BALB/c mice disease characterized by differences in the expression of dendritic cells and cellular immune response.
Resumo:
Adipose-derived mesenchymal stem cells (ADMSCs) display immunosuppressive properties, suggesting a promising therapeutic application in several autoimmune diseases, but their role in type 1 diabetes (T1D) remains largely unexplored. The aim of this study was to investigate the immune regulatory properties of allogeneic ADMSC therapy in T cell-mediated autoimmune diabetes in NOD mice. ADMSC treatment reversed the hyperglycemia of early-onset diabetes in 78% of diabetic NOD mice, and this effect was associated with higher serum insulin, amylin, and glucagon-like peptide 1 levels compared with untreated controls. This improved outcome was associated with downregulation of the CD4(+) Th1-biased immune response and expansion of regulatory T cells (Tregs) in the pancreatic lymph nodes. Within the pancreas, inflammatory cell infiltration and interferon-gamma levels were reduced, while insulin, pancreatic duodenal homeobox-1, and active transforming growth factor-beta 1 expression were increased. In vitro, ADMSCs induced the expansion/proliferation of Tregs in a cell contact-dependent manner mediated by programmed death ligand 1. In summary, ADMSC therapy efficiently ameliorates autoimmune diabetes pathogenesis in diabetic NOD mice by attenuating the Th1 immune response concomitant with the expansion/proliferation of Tregs, thereby contributing to the maintenance of functional beta-cells. Thus, this study may provide a new perspective for the development of ADMSC-based cellular therapies for T1D. Diabetes 61:2534-2545, 2012
Resumo:
Abstract Background Vaccination of neonates is generally difficult due to the immaturity of the immune system and consequent higher susceptibility to tolerance induction. Genetic immunization has been described as an alternative to trigger a stronger immune response in neonates, including significant Th1 polarization. In this investigation we analysed the potential use of a genetic vaccine containing the heat shock protein (hsp65) from Mycobacterium leprae (pVAXhsp65) against tuberculosis (TB) in neonate mice. Aspects as antigen production, genomic integration and immunogenicity were evaluated. Methods Hsp65 message and genomic integration were evaluated by RT-PCR and Southern blot, respectively. Immunogenicity of pVAXhsp65 alone or combined with BCG was analysed by specific induction of antibodies and cytokines, both quantified by ELISA. Results This DNA vaccine was transcribed by muscular cells of neonate mice without integration into the cellular genome. Even though this vaccine was not strongly immunogenic when entirely administered (three doses) during early animal's life, it was not tolerogenic. In addition, pVAXhsp65 and BCG were equally able to prime newborn mice for a strong and mixed immune response (Th1 + Th2) to pVAXhsp65 boosters administered later, at the adult life. Conclusion These results suggest that pVAXhsp65 can be safely used as a priming stimulus in neonate animals in prime-boost similar strategies to control TB. However, priming with BCG or pVAXhsp65, directed the ensuing immune response triggered by an heterologous or homologous booster, to a mixed Th1/Th2 pattern of response. Measures as introduction of IL-12 or GM-CSF genes in the vaccine construct or even IL-4 neutralization, are probably required to increase the priming towards Th1 polarization to ensure control of tuberculosis infection.
Resumo:
BACKGROUND Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira. The bacteria enter the human body via abraded skin or mucous membranes and may disseminate throughout. In general the clinical picture is mild but some patients develop rapidly progressive, severe disease with a high case fatality rate. Not much is known about the innate immune response to leptospires during haematogenous dissemination. Previous work showed that a human THP-1 cell line recognized heat-killed leptospires and leptospiral LPS through TLR2 instead of TLR4. The LPS of virulent leptospires displayed a lower potency to trigger TNF production by THP-1 cells compared to LPS of non-virulent leptospires. METHODOLOGY/PRINCIPAL FINDINGS We investigated the host response and killing of virulent and non-virulent Leptospira of different serovars by human THP-1 cells, human PBMC's and human whole blood. Virulence of each leptospiral strain was tested in a well accepted standard guinea pig model. Virulent leptospires displayed complement resistance in human serum and whole blood while in-vitro attenuated non-virulent leptospires were rapidly killed in a complement dependent manner. In vitro stimulation of THP-1 and PBMC's with heat-killed and living leptospires showed differential serovar and cell type dependence of cytokine induction. However, at low, physiological, leptospiral dose, living virulent complement resistant strains were consistently more potent in whole blood stimulations than the corresponding non-virulent complement sensitive strains. At higher dose living virulent and non-virulent leptospires were equipotent in whole blood. Inhibition of different TLRs indicated that both TLR2 and TLR4 as well as TLR5 play a role in the whole blood cytokine response to living leptospires. CONCLUSIONS/SIGNIFICANCE Thus, in a minimally altered system as human whole blood, highly virulent Leptospira are potent inducers of the cytokine response.
Resumo:
Mycoplasma bovis is an emerging bacterial agent causing bovine mastitis. Although these cell wall-free bacteria lack classical virulence factors, they are able to activate the immune system of the host. However, effects on the bovine mammary immune system are not yet well characterized and detailed knowledge would improve the prevention and therapy of mycoplasmal mastitis. The aim of this study was to investigate the immunogenic effects of M. bovis on the mammary gland in an established primary bovine mammary epithelial cell (bMEC) culture system. Primary bMEC of four different cows were challenged with live and heat-inactivated M. bovis strain JF4278 isolated from acute bovine mastitis, as well as with the type strain PG45. The immune response was evaluated 6 and 24h after mycoplasmal challenge by measuring the relative mRNA expression of selected immune factors by quantitative PCR. M. bovis triggered an immune response in bMEC, reflected by the upregulation of tumor necrosis factor-α, interleukin(IL)-1β, IL-6, IL-8, lactoferrin, Toll-like receptor-2, RANTES, and serum amyloid A mRNA. Interestingly, this cellular reaction was only observed in response to live, but not to heat-inactivated M. bovis, in contrast to other bacterial pathogens of mastitis such as Staphylococcus aureus. This study provides evidence that bMEC exhibit a strong inflammatory reaction in response to live M. bovis. The lack of a cellular response to heat-inactivated M. bovis supports the current hypothesis that mycoplasmas activate the immune system through secreted secondary metabolites.