975 resultados para Template-based
Resumo:
ß-arylhydrazone-imine ligand complexes of nickel(II), namely, 4,10-dimethyl-5,9-diazatrideca-4,9-diene-2,12-dione-3,11-diphenylhydrazonato nickel(II), Ni(acacpn)(N2Ph-R)2 and 1,11-diphenyl-3,9-dimethyl-4,8-diazaun-deca-3,8-diene,1,11-dione-2,10-diphenyl hydrazonato nickel(II), Ni (beacpn) (N2Ph-R)2, [R = H, o-CH3p-CH3] have been prepared by metal template reactions and characterized. Both the azomethine nitrogens and α-nitrogens of bis-hydrazone form the coordination sites of the square-planar geometry around the nickel(II) ion. Loss of CO from the molecule and subsequently an interesting methyl group migration to the nucleus of the chelate ring have been observed in the mass spectrum. Structures are proposed based on the spectral and magnetic properties.
Resumo:
Site-directed mutagenesis is widely used to study protein and nucleic acid structure and function. Despite recent advancements in the efficiency of procedures for site-directed mutagenesis, the fraction of site-directed mutants by most procedures rarely exceeds 50% on a routine basis and is never 100%. Hence it is typically necessary to sequence two or three clones each time a site-directed mutant is constructed. We describe a simple and robust gradient-PCR-based screen for distinguishing site-directed mutants from the starting, unmutated plasmid. The procedure can use either purified plasmid DNA or colony PCR, starting from a single colony. The screen utilizes the primer used for mutagenesis and a common outside primer that can be used for all other mutants constructed with the same template. Over 30 site-specific mutants in a variety of templates were successfully screened and all of the mutations detected were subsequently confirmed by DNA sequencing. A single base pair mismatch could be detected in an oligonucleotide of 36 bases. Detection efficiency was relatively independent of starting template concentration and the nature of the outside primer used. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Coordination-driven self-assembly of dinuclear half-sandwich p-cymene ruthenium(II) complexes Ru-2(mu-eta(4)-C2O4)(CH3OH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1a) and Ru-2(mu-eta(4)-C6H2O4)(CH3OH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1b) separately with imidazole-based tritopic donors (L-1-L-2) in methanol yielded a series of hexanuclear 3+2] trigonal prismatic cages (2-5), respectively L-1 = 1,3,5-tris(imidazole-1-yl) benzene; L-2 = 4,4',4 `'-tris(imidazole-1-yl) triphenylamine]. All the self-assembled cages 2-5 were characterized by various spectroscopic techniques (multinuclear NMR, Infra-red and ESI-MS) and their sizes, shapes were obtained through geometry optimization using molecular mechanics universal force field (MMUFF) computation. Despite the possibility due to the free rotation of donor sites of imidazole ligands, of two different atropoisomeric prismatic cages (C-3h or C-s) and polymeric product, the self-selection of single (C(3)h) conformational isomeric cages as the only product is a noteworthy observation. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
A synthetic strategy is described for the co-crystallization of four-and five-component molecular crystals, based on the fact that if any particular chemical constituent of a lower cocrystal is found in two different structural environments, these differences may be exploited to increase the number of components in the solid. 2-Methylresorcinol and tetramethylpyrazine are basic template molecules that allow for further supramolecular homologation. Ten stoichiometric quaternary cocrystals and one quintinary cocrystal with some solid solution character are reported. Cocrystals that do not lend themselves to such homologation are termed synthetic dead ends.
Resumo:
Iterative in situ click chemistry (IISCC) is a robust general technology for development of high throughput, inexpensive protein detection agents. In IISCC, the target protein acts as a template and catalyst, and assembles its own ligand from modular blocks of peptides. This process of ligand discovery is iterated to add peptide arms to develop a multivalent ligand with increased affinity and selectivity. The peptide based protein capture agents (PCC) should ideally have the same degree of selectivity and specificity as a monoclonal antibody, along with improved chemical stability. We had previously reported developing a PCC agent against bovine carbonic anhydrase II (bCAII) that could replace a polyclonal antibody. To further enhance the affinity or specificity of the PCC agent, I explore branching the peptide arms to develop branched PCC agents against bCAII. The developed branched capture agents have two to three fold higher affinities for the target protein. In the second part of my thesis, I describe the epitope targeting strategy, a strategy for directing the development of a peptide ligand against specific region or fragment of the protein. The strategy is successfully demonstrated by developing PCC agents with low nanomolar binding affinities that target the C-terminal hydrophobic motif of Akt2 kinase. One of the developed triligands inhibits the kinase activity of Akt. This suggests that, if targeted against the right epitope, the PCC agents can also influence the functional properties of the protein. The exquisite control of the epitope targeting strategy is further demonstrated by developing a cyclic ligand against Akt2. The cyclic ligand acts as an inhibitor by itself, without any iteration of the ligand discovery process. The epitope targeting strategy is a cornerstone of the IISCC technology and opens up new opportunities, leading to the development of protein detection agents and of modulators of protein functions.
Resumo:
This paper presents a method to generate new melodies, based on conserving the semiotic structure of a template piece. A pattern discovery algorithm is applied to a template piece to extract significant segments: those that are repeated and those that are transposed in the piece. Two strategies are combined to describe the semiotic coherence structure of the template piece: inter-segment coherence and intra-segment coherence. Once the structure is described it is used as a template for new musical content that is generated using a statistical model created from a corpus of bertso melodies and iteratively improved using a stochastic optimization method. Results show that the method presented here effectively describes a coherence structure of a piece by discovering repetition and transposition relations between segments, and also by representing the relations among notes within the segments. For bertso generation the method correctly conserves all intra and inter-segment coherence of the template, and the optimization method produces coherent generated melodies.
Resumo:
The current procedures in post-earthquake safety and structural assessment are performed manually by a skilled triage team of structural engineers/certified inspectors. These procedures, and particularly the physical measurement of the damage properties, are time-consuming and qualitative in nature. This paper proposes a novel method that automatically detects spalled regions on the surface of reinforced concrete columns and measures their properties in image data. Spalling has been accepted as an important indicator of significant damage to structural elements during an earthquake. According to this method, the region of spalling is first isolated by way of a local entropy-based thresholding algorithm. Following this, the exposure of longitudinal reinforcement (depth of spalling into the column) and length of spalling along the column are measured using a novel global adaptive thresholding algorithm in conjunction with image processing methods in template matching and morphological operations. The method was tested on a database of damaged RC column images collected after the 2010 Haiti earthquake, and comparison of the results with manual measurements indicate the validity of the method.
Resumo:
The interplay between robotics and neuromechanics facilitates discoveries in both fields: nature provides roboticists with design ideas, while robotics research elucidates critical features that confer performance advantages to biological systems. Here, we explore a system particularly well suited to exploit the synergies between biology and robotics: high-speed antenna-based wall following of the American cockroach (Periplaneta americana). Our approach integrates mathematical and hardware modeling with behavioral and neurophysiological experiments. Specifically, we corroborate a prediction from a previously reported wall-following template - the simplest model that captures a behavior - that a cockroach antenna-based controller requires the rate of approach to a wall in addition to distance, e.g., in the form of a proportional-derivative (PD) controller. Neurophysiological experiments reveal that important features of the wall-following controller emerge at the earliest stages of sensory processing, namely in the antennal nerve. Furthermore, we embed the template in a robotic platform outfitted with a bio-inspired antenna. Using this system, we successfully test specific PD gains (up to a scale) fitted to the cockroach behavioral data in a "real-world" setting, lending further credence to the surprisingly simple notion that a cockroach might implement a PD controller for wall following. Finally, we embed the template in a simulated lateral-leg-spring (LLS) model using the center of pressure as the control input. Importantly, the same PD gains fitted to cockroach behavior also stabilize wall following for the LLS model. © 2008 IEEE.
Resumo:
Two porous zirconium methylphosphonates (designated as ZMPmi and ZMPme respectively) were synthesized by using dibutyl methylphosphonate (DBMP) as a template. Two efficient post-synthetic treatments were developed to remove the incorporated template without destroying the hybrid structures. The materials were characterized by SEM, EPMA, TG, DTA, FTIR, and NMR. Specific surface area and porosity were evaluated by BET, alpha(s)-plots and DFT methods based on N-2 adsorption-desorption isotherms. The specific surface areas of ZMPmi and ZMPme are determined to be 279 and 403 m(2) g(-1) and the maxima of pore size distributions are at 0.7 and 1.3 nm respectively. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
In this work, we report the first application of water-soluble fluorescent Ag nanoclusters in fluorescent sensors. The fluorescence of poly(methacrylic acid) (PMAA)-templated Ag nanoclusters was found to be quenched effectively by Cu2+, but not when other common metal ions were present. By virtue of the specific response toward the analyte, a new, simple, and sensitive fluorescent method for detecting Cu2+ has been developed based on Ag nanoclusters.
Resumo:
In this work, a one-dimensional microrod-based three-dimensional flowerlike indium hydroxide (In(OH)(3)) structure was fabricated, without any templates or surfactants, using a well-known hydrothermal approach at a non-high temperature. In2O3 with similar morphology was formed by annealing In(OH)3 precursors and was characterized by Raman spectrum and photoluminescence (PL) spectrum in detail.
Resumo:
Uniform Lu2O3:Eu3+ nanorods and nanowires have been successfully prepared through a simple solution-based hydrothermal process followed by a subsequent calcination process without using any surfactant, catalyst, or template. On the basis of X-ray diffraction, thermogravimetric analysis and differential scanning calorimetry, and Fourier transform infrared spectroscopy results, it can be assumed that the as-obtained precursors have the structure formula of Lu4O(OH)(9)(NO3), which is a new phase and has not been reported. The morphology of the precursors could be modulated from nanorods to nanowires with the increase of pH value using ammonia solution. The as-formed precursors could transform to cubic Lu2O3:Eu3+ with the same morphology and a slight shrinkage in size after an annealing process, Both the Lu2O3:Eu3+ nanorods and nanowires exhibit the strong red emission corresponding to the D-5(0)-F-7(2) transition of the Eu3+ ions under UV light excitation or low-voltage electron beam excitation.
Resumo:
We initially report an electrochemical sensing platform based on molecularly imprinted polymers (MIPs) at functionalized Indium Tin Oxide Electrodes (ITO). In this research, aminopropyl-derivatized organosilane aminopropyltriethoxysilane (APTES), which plays the role of functional monomers for template recognition, was firstly self-assembled on an ITO electrode and then dopamine-imprinted sol was spin-coated on the modified surface. APTES which can interact with template dopamine (DA) through hydrogen bonds brought more binding sites located closely to the surface of the ITO electrode, thus made the prepared sensor more sensitive for DA detection. Potential scanning is presented to extract DA from the modified film, thus DA can rapidly and completely leach out. The affinity and selectivity of the resulting biomimetic sensor were characterized using cyclic voltammetry (CV). It exhibited an increased affinity for DA over that of structurally related molecules, the anodic current for DA oxidation depended on the concentration of DA in the linear range from 2 x 10(-6) M to 0.8 x 10(-3) M with a correlation coefficient of 0.9927.In contrast, DA-templated film prepared under identical conditions on a bare ITO showed obviously lower response toward dopamine in solution.
Resumo:
The spherical Lindquist type polyoxometalate, Mo6O192-, has been used as a noncoordinating anionic template for the construction of novel three-dimensional lanthanide-aromatic monocarboxylate dimer supramolecular networks [Ln(2)(DNBA)(4)(DMF)(8)][Mo6O19] (Ln = La 1, Ce 2, and Eu 3, DNBA = 3,5-dinitrobenzoate, DMF = dimethylformamide). The title compounds are characterized by elemental analyses, IR, and single-crystal X-ray diffractions. X-ray diffraction experiments reveal that two Ln(III) ions are bridged by four 3,5-dinitrobenzoate anions as asymmetrically bridging ligands, leading to dimeric cores, [Ln(2)(DNBA)(4)(DMF)(8)](2+); [Ln(2)(DNBA)(4)(DMF)(8)](2+) groups are joined together by pi-pi stacking interactions between the aromatic groups to form a two-dimensional grid-like network; the 2-D supramolecular layers are further extended into 3-D supramolecular networks with 1-D box-like channels by hydrogen-bonding interactions, in which hexamolybdate polyanions reside. The compounds represent the first examples of 3-D carboxylate-bridged lanthanide dimer supramolecular "host" networks formed by pi-pi stacking and hydrogen-bonding interactions encapsulating noncoordinating "guest" polyoxoanion species. The fluorescent activity of compound 3 is reported.
Resumo:
A new and simple approach for preparation of Au(111) single-crystal nanoisland - arrayed electrode ensembles, based on fine colloidal Au monolayer-directed seeding growth, is reported.