850 resultados para Takagi Sugeno fuzzy systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, an intelligent control approach based on neuro-fuzzy systems performance is presented, with the objective of counteracting the vibrations that affect the low-cost vision platform onboard an unmanned aerial system of rotating nature. A scaled dynamical model of a helicopter is used to simulate vibrations on its fuselage. The impact of these vibrations on the low-cost vision system will be assessed and an intelligent control approach will be derived in order to reduce its detrimental influence. Different trials that consider a neuro-fuzzy approach as a fundamental part of an intelligent semi-active control strategy have been carried out. Satisfactory results have been achieved compared to those obtained by means of vibration reduction passive techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic signature verification is a well-established and an active area of research with numerous applications such as bank check verification, ATM access, etc. This paper proposes a novel approach to the problem of automatic off-line signature verification and forgery detection. The proposed approach is based on fuzzy modeling that employs the Takagi-Sugeno (TS) model. Signature verification and forgery detection are carried out using angle features extracted from box approach. Each feature corresponds to a fuzzy set. The features are fuzzified by an exponential membership function involved in the TS model, which is modified to include structural parameters. The structural parameters are devised to take account of possible variations due to handwriting styles and to reflect moods. The membership functions constitute weights in the TS model. The optimization of the output of the TS model with respect to the structural parameters yields the solution for the parameters. We have also derived two TS models by considering a rule for each input feature in the first formulation (Multiple rules) and by considering a single rule for all input features in the second formulation. In this work, we have found that TS model with multiple rules is better than TS model with single rule for detecting three types of forgeries; random, skilled and unskilled from a large database of sample signatures in addition to verifying genuine signatures. We have also devised three approaches, viz., an innovative approach and two intuitive approaches using the TS model with multiple rules for improved performance. (C) 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a new scheme for off-line recognition of multi-font numerals using the Takagi-Sugeno (TS) model. In this scheme, the binary image of a character is partitioned into a fixed number of sub-images called boxes. The features consist of normalized vector distances (gamma) from each box. Each feature extracted from different fonts gives rise to a fuzzy set. However, when we have a small number of fonts as in the case of multi-font numerals, the choice of a proper fuzzification function is crucial. Hence, we have devised a new fuzzification function involving parameters, which take account of the variations in the fuzzy sets. The new fuzzification function is employed in the TS model for the recognition of multi-font numerals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traffic control at a road junction by a complex fuzzy logic controller is investigated. The increase in the complexity of junction means more number of input variables must be taken into account, which will increase the number of fuzzy rules in the system. A hierarchical fuzzy logic controller is introduced to reduce the number of rules. Besides, the increase in the complexity of the controller makes formulation of the fuzzy rules difficult. A genetic algorithm based off-line leaning algorithm is employed to generate the fuzzy rules. The learning algorithm uses constant flow-rates as training sets. The system is tested by both constant and time-varying flow-rates. Simulation results show that the proposed controller produces lower average delay than a fixed-time controller does under various traffic conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we present an optimized fuzzy visual servoing system for obstacle avoidance using an unmanned aerial vehicle. The cross-entropy theory is used to optimise the gains of our controllers. The optimization process was made using the ROS-Gazebo 3D simulation with purposeful extensions developed for our experiments. Visual servoing is achieved through an image processing front-end that uses the Camshift algorithm to detect and track objects in the scene. Experimental flight trials using a small quadrotor were performed to validate the parameters estimated from simulation. The integration of cross- entropy methods is a straightforward way to estimate optimal gains achieving excellent results when tested in real flights.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unmanned Aerial Vehicles (UAVs) industry is a fast growing sector. Nowadays, the market offers numerous possibilities for off-the-shelf UAVs such as quadrotors or fixed-wings. Until UAVs demonstrate advance capabilities such as autonomous collision avoidance they will be segregated and restricted to flight in controlled environments. This work presents a visual fuzzy servoing system for obstacle avoidance using UAVs. To accomplish this task we used the visual information from the front camera. Images are processed off-board and the result send to the Fuzzy Logic controller which then send commands to modify the orientation of the aircraft. Results from flight test are presented with a commercial off-the-shelf platform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern power systems have become more complex due to the growth in load demand, the installation of Flexible AC Transmission Systems (FACTS) devices and the integration of new HVDC links into existing AC grids. On the other hand, the introduction of the deregulated and unbundled power market operational mechanism, together with present changes in generation sources including connections of large renewable energy generation with intermittent feature in nature, have further increased the complexity and uncertainty for power system operation and control. System operators and engineers have to confront a series of technical challenges from the operation of currently interconnected power systems. Among the many challenges, how to evaluate the steady state and dynamic behaviors of existing interconnected power systems effectively and accurately using more powerful computational analysis models and approaches becomes one of the key issues in power engineering. The traditional computing techniques have been widely used in various fields for power system analysis with varying degrees of success. The rapid development of computational intelligence, such as neural networks, fuzzy systems and evolutionary computation, provides tools and opportunities to solve the complex technical problems in power system planning, operation and control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A health-monitoring and life-estimation strategy for composite rotor blades is developed in this work. The cross-sectional stiffness reduction obtained by physics-based models is expressed as a function of the life of the structure using a recent phenomenological damage model. This stiffness reduction is further used to study the behavior of measurable system parameters such as blade deflections, loads, and strains of a composite rotor blade in static analysis and forward flight. The simulated measurements are obtained using an aeroelastic analysis of the composite rotor blade based on the finite element in space and time with physics-based damage modes that are then linked to the life consumption of the blade. The model-based measurements are contaminated with noise to simulate real data. Genetic fuzzy systems are developed for global online prediction of physical damage and life consumption using displacement- and force-based measurement deviations between damaged and undamaged conditions. Furthermore, local online prediction of physical damage and life consumption is done using strains measured along the blade length. It is observed that the life consumption in the matrix-cracking zone is about 12-15% and life consumption in debonding/delamination zone is about 45-55% of the total life of the blade. It is also observed that the success rate of the genetic fuzzy systems depends upon the number of measurements, type of measurements and training, and the testing noise level. The genetic fuzzy systems work quite well with noisy data and are recommended for online structural health monitoring of composite helicopter rotor blades.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of classification of time series data is an interesting problem in the field of data mining. Even though several algorithms have been proposed for the problem of time series classification we have developed an innovative algorithm which is computationally fast and accurate in several cases when compared with 1NN classifier. In our method we are calculating the fuzzy membership of each test pattern to be classified to each class. We have experimented with 6 benchmark datasets and compared our method with 1NN classifier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, inspired by two very different, successful metric theories such us the real view-point of Lowen's approach spaces and the probabilistic field of Kramosil and Michalek's fuzzymetric spaces, we present a family of spaces, called fuzzy approach spaces, that are appropriate to handle, at the same time, both measure conceptions. To do that, we study the underlying metric interrelationships between the above mentioned theories, obtaining six postulates that allow us to consider such kind of spaces in a unique category. As a result, the natural way in which metric spaces can be embedded in both classes leads to a commutative categorical scheme. Each postulate is interpreted in the context of the study of the evolution of fuzzy systems. First properties of fuzzy approach spaces are introduced, including a topology. Finally, we describe a fixed point theorem in the setting of fuzzy approach spaces that can be particularized to the previous existing measure spaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho avalia o desempenho de um controlador fuzzy (tipo Takagi-Sugeno-Kang) quando, utilizando tecnologia sem fio para conectar as entradas e a saída do controlador aos sensores/atuadores, sofre perda das informações destes canais, resultado de perdas de pacotes. Tipicamente são utilizados controladores PID nas malhas de controle. Assim, o estudo realizado compara os resultados obtidos com os controladores fuzzy com os resultados dos controladores PID. Além disso, o trabalho visa estudar o comportamento deste controlador implementado em uma arquitetura microprocessada utilizando números inteiros nos cálculos, interpolação com segmentos de reta para as funções de pertinência da entrada e singletons nas funções de pertinência da saída. Para esse estudo foi utilizado, num ambiente Matlab/Simulink, um controlador fuzzy e o aplicativo True Time para simular o ambiente sem fio. Desenvolvido pelo Departamento de Controle Automático da Universidade de Lund, o True Time é baseado no Matlab/Simulink e fornece todas as ferramentas necessárias para a criação de um ambiente de rede (com e sem fio) virtual. Dado o paradigma de que quanto maior for a utilização do canal, maior a degradação do mesmo, é avaliado o comportamento do sistema de controle e uma proposta para diminuir o impacto da perda de pacotes no controle do sistema, bem como o impacto da variação das características internas da planta e da arquitetura utilizada na rede. Inicialmente são realizados ensaios utilizando-se o controlador fuzzy virtual (Simulink) e, posteriormente, o controlador implementado com dsPIC. Ao final, é apresentado um resumo desses ensaios e a comprovação dos bons resultados obtidos com um controlador fuzzy numa malha de controle utilizando uma rede na entrada e na saída do controlador.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho investiga a implementação de sistemas fuzzy com circuitos eletrônicos. Tais sistemas têm demonstrado sua capacidade de resolver diversos tipos de problemas em várias aplicações de engenharia, em especial nas relacionadas com controle de processos. Para processos mais complexos, o raciocínio aproximado da lógica fuzzy fornece uma maneira de compreender o comportamento do sistema, permitindo a interpolação aproximada entre situações observadas de entrada e saída. A implementação de um sistema fuzzy pode ser baseada em hardware, em software ou em ambos. Tipicamente, as implementações em software utilizam ambientes de programação integrados com simulação, de modo a facilitar o trabalho do projetista. As implementações em hardware, tradicionais ou evolutivas, podem ser analógicas ou digitais e viabilizam sistemas de maior desempenho. Este trabalho tem por objetivo pesquisar a implementação eletrônica de sistemas fuzzy, a fim de viabilizar a criação de sistemas reais capazes de realizar o mapeamento de entrada e saída adequado. O foco é a utilização de uma plataforma com uma arquitetura analógico-digital baseada em uma tabela de mapeamento armazenada em uma memória de alta capacidade. Memórias do tipo SD (Secure Digital) foram estudadas e utilizadas na construção do protótipo eletrônico da plataforma. Também foram desenvolvidos estudos sobre a quantização, especificamente sobre a possibilidade de redução do número de bits. Com a implementação realizada é possível desenvolver um sistema fuzzy num ambiente simulado (Matlab), configurar a plataforma e executar o sistema fuzzy diretamente na plataforma eletrônica. Os testes com o protótipo construído comprovaram seu bom funcionamento.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geração e Simplificação da Base de Conhecimento de um Sistema Híbrido Fuzzy- Genético propõe uma metodologia para o desenvolvimento da base de conhecimento de sistemas fuzzy, fundamentada em técnicas de computação evolucionária. Os sistemas fuzzy evoluídos são avaliados segundo dois critérios distintos: desempenho e interpretabilidade. Uma metodologia para a análise de problemas multiobjetivo utilizando a Lógica Fuzzy foi também desenvolvida para esse fim e incorporada ao processo de avaliação dos AGs. Os sistemas fuzzy evoluídos foram avaliados através de simulações computacionais e os resultados obtidos foram comparados com os obtidos por outros métodos em diferentes tipos de aplicações. O uso da metodologia proposta demonstrou que os sistemas fuzzy evoluídos possuem um bom desempenho aliado a uma boa interpretabilidade da sua base de conhecimento, tornando viável a sua utilização no projeto de sistemas reais.