959 resultados para TYPE-1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and aims. Type 1 diabetes (T1D), an autoimmune disease in which the insulin producing beta cells are gradually destroyed, is preceded by a prodromal phase characterized by appearance of diabetes-associated autoantibodies in circulation. Both the timing of the appearance of autoantibodies and their quality have been used in the prediction of T1D among first-degree relatives of diabetic patients (FDRs). So far, no general strategies for identifying individuals at increased disease risk in the general population have been established, although the majority of new cases originate in this population. The current work aimed at assessing the predictive role of diabetes-associated immunologic and metabolic risk factors in the general population, and comparing these factors with data obtained from studies on FDRs. Subjects and methods. Study subjects in the current work were subcohorts of participants of the Childhood Diabetes in Finland Study (DiMe; n=755), the Cardiovascular Risk in Young Finns Study (LASERI; n=3475), and the Finnish Type 1 Diabetes Prediction and Prevention Study (DIPP) Study subjects (n=7410). These children were observed for signs of beta-cell autoimmunity and progression to T1D, and the results obtained were compared between the FDRs and the general population cohorts. --- Results and conclusions. By combining HLA and autoantibody screening, T1D risks similar to those reported for autoantibody-positive FDRs are observed in the pediatric general population. Progression rate to T1D is high in genetically susceptible children with persistent multipositivity. Measurement of IAA affinity failed in stratifying the risk assessment in young IAA-positive children with HLA-conferred disease susceptibility, among whom affinity of IAA did not increase during the prediabetic period. Young age at seroconversion, increased weight-for-height, decreased early insulin response, and increased IAA and IA-2A levels predict T1D in young children with genetic disease susceptibility and signs of advanced beta-cell autoimmunity. Since the incidence of T1D continues to increase, efforts aimed at preventing T1D are important, and reliable disease prediction is needed both for intervention trials and for effective and safe preventive therapies in the future. Our observations confirmed that combined HLA-based screening and regular autoantibody measurements reveal similar disease risks in pediatric general population as those seen in prediabetic FDRs, and that risk assessment can be stratified further by studying glucose metabolism of prediabetic subjects. As these screening efforts are feasible in practice, the knowledge now obtained can be exploited while designing intervention trials aimed at secondary prevention of T1D.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: The pathogenesis of diabetic nephropathy remains a matter of debate, although strong evidence suggests that it results from the interaction between susceptibility genes and the diabetic milieu. The true pathogenetic mechanism remains unknown, but a common denominator of micro- and macrovascular complications may exist. Some have suggested that low-grade inflammation and activation of the innate immune system might play a synergistic role in the pathogenesis of diabetic nephropathy. Aims of the study: The present studies were undertaken to investigate whether low-grade inflammation, mannan-binding lectin (MBL) and α-defensin play a role, together with adiponectin, in patients with type 1 diabetes and diabetic nephropathy. Subjects and methods: This study is part of the ongoing Finnish Diabetic Nephropathy Study (FinnDiane). The first four cross-sectional substudies of this thesis comprised 194 patients with type 1 diabetes divided into three groups (normo-, micro-, and macroalbuminuria) according to their albumin excretion rate (AER). The fifth substudy aimed to determine whether baseline serum adiponectin plays a role in the development and progression of diabetic nephropathy. This follow-up study included 1330 patients with type 1 diabetes and a mean follow-up period of five years. The patients were divided into three groups depending on their AER at baseline. As a measure of low-grade inflammation, highly sensitive CRP (hsCRP) and α-defensin were measured with radio-immunoassay, and interleukin-6 (IL-6) with high- sensitivity enzyme immuno-assay. Mannan-binding lectin and adiponectin were determined with time-resolved immunofluorometric assays. The progression of albuminuria from one stage to the other served as a measure of the progression of diabetic nephropathy. Results: Low-grade inflammatory markers, MBL, adiponectin, and α-defensin were all associated with diabetic nephropathy, whereas MBL, adiponectin, and α-defensin per se were unassociated with low-grade inflammatory markers. AER was the only clinical variable independently associated with hsCRP. AER, HDL-cholesterol and the duration of diabetes were independently associated with IL-6. HbA1c was the only variable independently associated with MBL. The estimated glomerular filtration rate (eGFR), AER, and waist-to-hip ratio were independently associated with adiponectin. Systolic blood pressure, HDL-cholesterol, total cholesterol, age, and eGFR were all independently associated with α-defensin. In patients with macroalbuminuria, progression to end-stage renal disease (ESRD) was associated with higher baseline adiponectin concentrations. Discussion and conclusions: Low-grade inflammation, MBL, adiponectin, and defensin were all associated with diabetic nephropathy in these cross-sectional studies. In contrast however, MBL, adiponectin, and defensin were not associated with low-grade inflammatory markers per se. Nor was defensin associated with MBL, which may suggest that these different players function in a coordinated fashion during the deleterious process of diabetic nephropathy. The question of what causes low-grade inflammation in patients with type 1 diabetes and diabetic nephropathy, however, remains unanswered. We could observe in our study that glycemic control, an atherosclerotic lipid profile, and waist-to-hip ratio (WHR) were associated with low-grade inflammation in the univariate analysis, although in the multivariate analysis, only AER, HDL-cholesterol, and the duration of diabetes, as a measure of glycemic load, proved to be independently associated with inflammation. Notably, all these factors are modifiable with changes in lifestyle and/or with a targeted medication. In the follow-up study, elevated serum adiponectin levels at baseline predicted the progression from macroalbuminuria to ESRD independently of renal function at baseline. This observation does not preclude adiponectin as a favorable factor during the process of diabetic nephropathy, since the rise in serum adiponectin concentrations may remain a mechanism by which the body compensates for the demands created by the diabetic milieu.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: One-third of patients with type 1 diabetes develop diabetic complications, such as diabetic nephropathy. The diabetic complications are related to a high mortality from cardiovascular disease, impose a great burden on the health care system, and reduce the health-related quality of life of patients. Aims: This thesis assessed, whether parental risk factors identify subjects at a greater risk of developing diabetic complications. Another aim was to evaluate the impact of a parental history of type 2 diabetes on patients with type 1 diabetes. A third aim was to assess the role of the metabolic syndrome in patients with type 1 diabetes, both its presence and its predictive value with respect to complications. Subjects and methods: This study is part of the ongoing nationwide Finnish Diabetic Nephropathy (FinnDiane) Study. The study was initiated in 1997, and, thus far, 4,800 adult patients with type 1 diabetes have been recruited. Since 2004, follow-up data have also been collected in parallel to the recruitment of new patients. Studies I to III have a cross-sectional design, whereas Study IV has a prospective design. Information on parents was obtained from the patients with type 1 diabetes by a questionnaire. Results: Clustering of parental hypertension, cardiovascular disease, and diabetes (type 1 and type 2) was associated with diabetic nephropathy in patients with type 1 diabetes, as was paternal mortality. A parental history of type 2 diabetes was associated with a later onset of type 1 diabetes, a higher prevalence of the metabolic syndrome, and a metabolic profile related to insulin resistance, despite no difference in the distribution of human leukocyte antigen genotypes or the presence of diabetic complications. A maternal history of type 2 diabetes, seemed to contribute to a worse metabolic profile in the patients with type 1 diabetes than a paternal history. The metabolic syndrome was a frequent finding in patients with type 1 diabetes, observed in 38% of males and 40% of females. The prevalence increased with worsening of the glycemic control and more severe renal disease. The metabolic syndrome was associated with a 3.75-fold odds ratio for diabetic nephropathy, and all of the components of the syndrome were independently associated with diabetic nephropathy. The metabolic syndrome, independent of diabetic nephropathy, increased the risk of cardiovascular events and cardiovascular and diabetes-related mortality over a 5.5-year follow-up. With respect to progression of diabetic nephropathy, the role of the metabolic syndrome was less clear, playing a strong role only in the progression from macroalbuminuria to end-stage renal disease. Conclusions: Familial factors and the metabolic syndrome play an important role in patients with type 1 diabetes. Assessment of these factors is an easily applicable tool in clinical practice to identify patients at a greater risk of developing diabetic complications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metabolic syndrome and type 1 diabetes are associated with brain alterations such as cognitive decline brain infarctions, atrophy, and white matter lesions. Despite the importance of these alterations, their pathomechanism is still poorly understood. This study was conducted to investigate brain glucose and metabolites in healthy individuals with an increased cardiovascular risk and in patients with type 1 diabetes in order to discover more information on the nature of the known brain alterations. We studied 43 20- to 45-year-old men. Study I compared two groups of non-diabetic men, one with an accumulation of cardiovascular risk factors and another without. Studies II to IV compared men with type 1 diabetes (duration of diabetes 6.7 ± 5.2 years, no microvascular complications) with non-diabetic men. Brain glucose, N-acetylaspartate (NAA), total creatine (tCr), choline, and myo-inositol (mI) were quantified with proton magnetic resonance spectroscopy in three cerebral regions: frontal cortex, frontal white matter, thalamus, and in cerebellar white matter. Data collection was performed for all participants during fasting glycemia and in a subgroup (Studies III and IV), also during a hyperglycemic clamp that increased plasma glucose concentration by 12 mmol/l. In non-diabetic men, the brain glucose concentration correlated linearly with plasma glucose concentration. The cardiovascular risk group (Study I) had a 13% higher plasma glucose concentration than the control group, but no difference in thalamic glucose content. The risk group thus had lower thalamic glucose content than expected. They also had 17% increased tCr (marker of oxidative metabolism). In the control group, tCr correlated with thalamic glucose content, but in the risk group, tCr correlated instead with fasting plasma glucose and 2-h plasma glucose concentration in the oral glucose tolerance test. Risk factors of the metabolic syndrome, most importantly insulin resistance, may thus influence brain metabolism. During fasting glycemia (Study II), regional variation in the cerebral glucose levels appeared in the non-diabetic subjects but not in those with diabetes. In diabetic patients, excess glucose had accumulated predominantly in the white matter where the metabolite alterations were also the most pronounced. Compared to the controls values, the white matter NAA (marker of neuronal metabolism) was 6% lower and mI (glia cell marker) 20% higher. Hyperglycemia is therefore a potent risk factor for diabetic brain disease and the metabolic brain alterations may appear even before any peripheral microvascular complications are detectable. During acute hyperglycemia (Study III), the increase in cerebral glucose content in the patients with type 1 diabetes was, dependent on brain region, between 1.1 and 2.0 mmol/l. An every-day hyperglycemic episode in a diabetic patient may therefore as much as double brain glucose concentration. While chronic hyperglycemia had led to accumulation of glucose in the white matter, acute hyperglycemia burdened predominantly the gray matter. Acute hyperglycemia also revealed that chronic fluctuation in blood glucose may be associated with alterations in glucose uptake or in metabolism in the thalamus. The cerebellar white matter appeared very differently from the cerebral (Study IV). In the non-diabetic men it contained twice as much glucose as the cerebrum. Diabetes had altered neither its glucose content nor the brain metabolites. The cerebellum seems therefore more resistant to the effects of hyperglycemia than is the cerebrum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Patients with type 1 diabetes are at markedly increased risk of vascular complications. In this respect it is noteworthy that hyperglycaemia that is shown to cause endothelial dysfunction, has clearly been shown to be a risk factor for diabetic microvascular disease. However, the role of hyperglycaemia as a predictor of macrovascular disease is not as clear as for microvascular disease, although type 1 diabetes itself increases the risk of cardiovascular disease substantially. Furthermore, it is not known whether it is the short-term or the long-term hyperglycaemia that confers possible risk. In addition, the role of glucose variability as a predictor of complications is to a large extent unexplored. Interestingly, although hyperglycaemia increases the risk of pre-eclampsia in women with type 1 diabetes, it is unclear whether pre-eclampsia, a condition characterized by endothelial dysfunction, is also a risk factor for microvascular complication, diabetic nephropathy. Aims. This doctoral thesis investigated the role of acute hyperglycaemia and glucose variability on arterial stiffness and cardiac ventricular repolarisation in male patients with type 1 diabetes as well as in healthy male volunteers. The thesis also explored whether acute hyperglycaemia leads to an inflammatory response, endothelial dysfunction and oxidative stress. Finally, the role of pre-eclampsia, as a predictor of diabetic nephropathy in type 1 diabetes was examined. Subjects and methods. In order to study glucose variability and the daily glycaemic control, 22 male patients with type 1 diabetes, without any diabetic complications, were monitored for 72-h with a continuous glucose monitoring system. At the end of the 72-h glucose monitoring period a 2-h hyperglycaemic clamp was performed both in the patients with type 1 diabetes and in the 13 healthy age-matched male volunteers. Blood pressure, arterial stiffness and QT time were measured to detect vascular changes during acute hyperglycaemia. Blood samples were drawn at baseline (normoglycaemia) and during acute hyperglycaemia. In another patient sample, women with type 1 diabetes were followed during their pregnancy and restudied eleven years later to elucidate the role of pre-eclampsia and pregnancy-induced hypertension as potential risk factors for diabetic nephropathy. Results and conclusions. Acute hyperglycaemia increased arterial stiffness as well as caused a disturbance in the myocardial ventricular repolarisation, emphasizing the importance of a strict daily glycaemic control in male patients with type 1 diabetes. An inflammatory response was also observed during acute hyperglycaemia. Furthermore, a high mean daily blood glucose but not glucose variability per se is associated with arterial stiffness. While glucose variability in turn correlated with central blood pressure, the results suggest that the glucose metabolism is closely linked to the haemodynamic changes in male patients with uncomplicated type 1 diabetes. Notably, the results are not directly applicable to females. Finally, a history of a pre-eclamptic pregnancy, but not pregnancy-induced hypertension was associated with increased risk of diabetic nephropathy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type 1 diabetes is associated with the risk for late diabetic complications which are divided into microvascular (retinopathy, nephropathy, and neuropathy) and macrovascular (cardiovascular disease, CVD) diseases. The risk for diabetic complication can be reduced by effective treatment, most importantly the glycaemic control. Glycaemia in type 1 diabetes is influenced by the interplay between insulin injections and lifestyle factors such as physical activity and diet. The effect of physical activity in patients with type 1 diabetes is not well known, however. The aim of this thesis was to investigate the physical activity and the physical fitness of patients with type 1 diabetes with special emphasis on glycaemic control and the diabetic complications. The patients included in the study were all part of the nationwide, multicenter Finnish Diabetic Nephropathy (FinnDiane) Study which aims to characterise genetic, clinical, and environmental factors that predispose to diabetic complications in patients with type 1 diabetes. In addition, subjects from the IDentification of EArly mechanisms in the pathogenesis of diabetic Late complications (IDEAL) Study were studied. Physical activity was assessed in the FinnDiane Study in 1945 patients by a validated questionnaire. Physical fitness was measured in the IDEAL Study by spiroergometry (cycle test with measurement of respiratory gases) in 86 young adults with type 1 diabetes and in 27 healthy controls. All patients underwent thorough clinical characterisation of their diabetic complication status. Four substudies were cross-sectional using baseline data and one study additionally used follow-up data. Physical activity, especially the intensity of activities, was reduced in patients affected by diabetic nephropathy, retinopathy, and CVD. Low physical activity was associated with poor glycaemic control, a finding most clear in women and evident also in patients with no signs of diabetic complications. Furthermore, low physical activity was associated with a higher HbA1c variability, which in turn was associated with the progression of renal disease and CVD during follow-up. A higher level of physical activity was also associated with better insulin sensitivity. The prevalence of the metabolic syndrome in type 1 diabetes was also lower the higher the physical activity. The aerobic physical fitness level of young adults with type 1 diabetes was reduced compared with healthy peers and in men an association between higher fitness level and lower HbA1c was observed. In patients with type 1 diabetes, a higher physical activity was associated with better glycaemic control and may thus be beneficial with respect to the prevention of diabetic complications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes is a chronic disease requiring continuous medical supervision and patient education to prevent acute secondary complications. In this study, we have harnessed the inherent property of insulin to aggregate into an oligomeric intermediate on the pathway to amyloid formation, to generate a form that exhibits controlled and sustained release for extended periods. Administration of a single dose of the insulin oligomer, defined here as the supramolecular insulin assembly II (SIA-II), to experimental animals rendered diabetic by streptozotocin or alloxan, released the hormone capable of maintaining physiologic glucose levels for > 120 days for bovine and > 140 days for recombinant human insulin without fasting hypoglycemia. Moreover, the novel SIA-II described here not only improved the glycemic control, but also reduced the extent of secondary diabetic complications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analysis of the Mycobacterium smegmatis genome suggests that it codes for several thiolases and thiolase-like proteins. Thiolases are an important family of enzymes that are involved in fatty acid metabolism. They occur as either dimers or tetramers. Thiolases catalyze the Claisen condensation of two acetyl-Coenzyme A molecules in the synthetic direction and the thiolytic cleavage of 3-ketoacyl-Coenzyme A molecules in the degradative direction. Some of the M. smegmatis genes have been annotated as thiolases of the poorly characterized SCP2-thiolase subfamily. The mammalian SCP2-thiolase consists of an N-terminal thiolase domain followed by an additional C-terminal domain called sterol carrier protein-2 or SCP2. The M. smegmatis protein selected in the present study, referred to here as the thiolase-like protein type 1 (MsTLP1), has been biochemically and structurally characterized. Unlike classical thiolases, MsTLP1 is a monomer in solution. Its structure has been determined at 2.7 angstrom resolution by the single wavelength anomalous dispersion method. The structure of the protomer confirms that the N-terminal domain has the thiolase fold. An extra C-terminal domain is indeed observed. Interestingly, it consists of six beta-strands forming an anti-parallel beta-barrel which is completely different from the expected SCP2-fold. Detailed sequence and structural comparisons with thiolases show that the residues known to be essential for catalysis are not conserved in MsTLP1. Consistent with this observation, activity measurements show that MsTLP1 does not catalyze the thiolase reaction. This is the first structural report of a monomeric thiolase-like protein from any organism. These studies show that MsTLP1 belongs to a new group of thiolase related proteins of unknown function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Standard or 'traditional' human insulin preparations such as regular soluble insulin and neutral protamine Hagedorn (NPH) insulin have shortcomings in terms of their pharmacokinetic and pharmacodynamic properties that limit their clinical efficacy. Structurally modified insulin molecules or insulin 'analogs' have been developed with the aim of delivering insulin replacement therapy in a more physiological manner. In the last 10 years, five insulin analog preparations have become commercially available for clinical use in patients with type 1 diabetes mellitus: three 'rapid' or fast-acting analogs (insulin lispro, aspart, and glulisine) and two long-acting analogs (insulin glargine and detemir). This review highlights the specific pharmacokinetic properties of these new insulin analog preparations and focuses on their potential clinical advantages and disadvantages when used in children and adolescents with type 1 diabetes mellitus. The fast-acting analogs specifically facilitate more flexible insulin injection timing with regard to meals and activities, whereas the long-acting analogs have a more predictable profile of action and lack a peak effect. To date, clinical trials in children and adolescents have been few in number, but the evidence available from these and from other studies carried out in adults with type 1 diabetes suggest that they offer significant benefits in terms of reduced frequency of nocturnal hypoglycemia, better postprandial blood glucose control, and improved quality of life when compared with traditional insulins. In addition, insulin detemir therapy is unique in that patients may benefit from reduced risk of excessive weight, particularly during adolescence. Evidence for sustained long-term improvements in glycosylated hemoglobin, on the other hand, is modest. Furthermore, alterations to insulin/insulin-like growth factor I receptor binding characteristics have also raised theoretical concerns that insulin analogs may have an increased mitogenic potential and risk of tumor development, although evidence from both in vitro and in vivo animal studies do not support this assertion. Long-term surveillance has been recommended and further carefully designed prospective studies are needed to evaluate the overall benefits and clinical efficacy of insulin analog therapy in children and adolescents with type 1 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background/Aims: In diabetic ventricular myocytes, transient outward potassium current (I-to) amplitude is severely reduced because of the impaired catecholamine release that characterizes diabetic autonomic neuropathy. Sympathetic nervous system exhibits a trophic effect on I-to since incubation of myocytes with noradrenaline restores current amplitude via beta-adrenoceptor (beta AR) stimulation. Here, we investigate the intracellular signalling pathway though which incubation of diabetic cardiomyocytes with the beta AR agonist isoproterenol recovers I-to amplitude to normal values. Methods: Experiments were performed in ventricular myocytes isolated from streptozotocin-diabetic rats. I-to current was recorded by using the patch-clamp technique. Kv4 channel expression was determined by immunofluorescence. Protein-protein interaction was determined by coimmunoprecipitation. Results: Stimulation of beta AR activates first a G alpha s protein, adenylyl cyclase and Protein Kinase A. PKA-phosphorylated receptor then switches to the G alpha i protein. This leads to the activation of the beta AR-Kinase-1 and further receptor phosphorylation and arrestin dependent internalization. The internalized receptor-arrestin complex recruits and activates cSrc and the MAPK cascade, where Ras, c-Raf1 and finally ERK1/2 mediate the increase in Kv4.2 and Kv4.3 protein abundance in the plasma membrane. Conclusion: beta(2)AR stimulation activates a G alpha s and G alpha i protein dependent pathway where the ERK1/2 modulates the Ito current amplitude and the density of the Kv4.2 and Kv4.2 channels in the plasma membrane upon sympathetic stimulation in diabetic heart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The pig-tailed macaques are the only Old World monkeys known to be susceptible to human immunodeficiency virus type 1 (HIV-1) infection. We have previously reported that the TRIM5-Cyclophilin A (TRIMCyp) fusion in pig-tailed macaques (Macaca n