950 resultados para TK Electrical engineering. Electronics Nuclear engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a discussion on the potential use of high tech garbage, including electronic waste (e-waste), as a source of mechanisms, sensors and actuators, that can be adapted to improve the reality of microprocessor systems labs, at low cost. By means of some examples, it is shown that entire subsystems withdrawn of high tech equipments can be easily integrated into existing laboratory infrastructure. As examples, first a precision positioning mechanism is presented, which was taken from a discarded commercial ink jet printer and interfaced with a microprocessor board used in the laboratory classes. Secondly, a read/write head and its positioning mechanism has been withdrawn of a retired CD/DVD drive and again interfaced with the microprocessor board. Students who have been using these new experiments strongly approve their inclusion in the lab schedules. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a study in which the relationship between basic subjects (Mathematics and Physics) and applied engineering subjects (related to Machinery, Electrical Engineering, Topography and Buildings) in higher engineering education curricula is evaluated. The analysis has been conducted using the academic records of 206 students for five years. Furthermore, 34 surveys and personal interviews were conducted to analyze the connections between the contents taught in each subject and to identify student perceptions of the correlation with other subjects or disciplines. At the same time, the content of the different subjects have been analyzed to verify the relationship among the disciplines.Aproper coordination among subjects will allow students to relate and interconnect topics of different subjects, even with the ones learnt in previous courses, while also helping to reduce dropout rates and student failures in successfully accomplishing the different courses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliographical references.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bibliography: leaf 6.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[v. 1] The Panama canal. 2 v.--[v. 2] Waterways and irrigation.--[v. 3] Municipal engineering.--[v. 4] Railway engineering.--[v. 5] Materials of engineering construction.--[v. 6] Mechanical engineering.--[v. 7] Electrical engineering and hydroelectric power development.--[v. 8] Mining engineering.--[v. 9] Metallurgy.--[v. 10] Naval architecture and marine engineering.--[v. 11] Miscellany.--[v. 12] Index volume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bibliography at end of each volume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Description based on: Aug. 1910; title from cover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Index of current electrical literature," Dec. 1887- appended to v. 5-

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"October 1961."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Description based on: Vol. 198, no. 21 (28 May/4 June 1976); title from caption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Control Engineering is an essential part of university electrical engineering education. Normally, a control course requires considerable mathematical as well as engineering knowledge and is consequently regarded as a difficult course by many undergraduate students. From the academic point of view, how to help the students to improve their learning of the control engineering knowledge is therefore an important task which requires careful planning and innovative teaching methods. Traditionally, the didactic teaching approach has been used to teach the students the concepts needed to solve control problems. This approach is commonly adopted in many mathematics intensive courses; however it generally lacks reflection from the students to improve their learning. This paper addresses the practice of action learning and context-based learning models in teaching university control courses. This context-based approach has been practised in teaching several control engineering courses in a university with promising results, particularly in view of student learning performances.