829 resultados para T S fuzzy system


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta dissertação apresenta uma técnica para detecção e diagnósticos de faltas incipientes. Tais faltas provocam mudanças no comportamento do sistema sob investigação, o que se reflete em alterações nos valores dos parâmetros do seu modelo matemático representativo. Como plataforma de testes, foi elaborado um modelo de um sistema industrial em ambiente computacional Matlab/Simulink, o qual consiste em uma planta dinâmica composta de dois tanques comunicantes entre si. A modelagem dessa planta foi realizada através das equaçõessicas que descrevem a dinâmica do sistema. A falta, a que o sistema foi submetido, representa um estrangulamento gradual na tubulação de saída de um dos tanques. Esse estrangulamento provoca uma redução lenta, de até 20 %, na seção desse tubo. A técnica de detecção de falta foi realizada através da estimação em tempo real dos parâmetros de modelos Auto-regressivos com Entradas Exógenas (ARX) com estimadores Fuzzy e de Mínimos Quadrados Recursivos. Já, o diagnóstico do percentual de entupimento da tubulação foi obtido por um sistema fuzzy de rastreamento de parâmetro, realimentado pela integral do resíduo de detecção. Ao utilizar essa metodologia, foi possível detectar e diagnosticar a falta simulada em ts pontos de operação diferentes do sistema. Em ambas as técnicas testadas, o método de MQR teve um bom desempenho, apenas para detectar a falta. Já, o método que utilizou estimação com supervisão fuzzy obteve melhor desempenho, em detectar e diagnosticar as faltas aplicadas ao sistema, constatando a proposta do trabalho.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La diabetes mellitus es un trastorno del metabolismo de los carbohidratos producido por la insuficiente o nula producción de insulina o la reducida sensibilidad a esta hormona. Es una enfermedad crónica con una mayor prevalencia en los países desarrollados debido principalmente a la obesidad, la vida sedentaria y disfunciones en el sistema endocrino relacionado con el páncreas. La diabetes Tipo 1 es una enfermedad autoinmune en la que son destruidas las células beta del páncreas, que producen la insulina, y es necesaria la administración de insulina exógena. Un enfermo de diabetes Tipo 1 debe seguir una terapia con insulina administrada por la vía subcutánea que debe estar adaptada a sus necesidades metabólicas y a sus hábitos de vida, esta terapia intenta imitar el perfil insulínico de un páncreas no patológico. La tecnología actual permite abordar el desarrollo del denominado “páncreas endocrino artificial”, que aportaría precisión, eficacia y seguridad para los pacientes, en cuanto a la normalización del control glucémico y reducción del riesgo de hipoglucemias. Permitiría que el paciente no estuviera tan pendiente de su enfermedad. El páncreas artificial consta de un sensor continuo de glucosa, una bomba de infusión de insulina y un algoritmo de control, que calcula la insulina a infusionar usando la glucosa como información principal. Este trabajo presenta un método de control en lazo semi-cerrado mediante un sistema borroso experto basado en reglas. La regulación borrosa se fundamenta en la ambigüedad del lenguaje del ser humano. Esta incertidumbre sirve para la formación de una serie de reglas que representan el pensamiento humano, pero a la vez es el sistema que controla un proceso, en este caso el sistema glucorregulatorio. Este proyecto está enfocado en el diseño de un controlador borroso que haciendo uso de variables como la glucosa, insulina y dieta, sea capaz de restaurar la función endocrina del páncreas de forma tecnológica. La validación del algoritmo se ha realizado principalmente mediante experimentos en simulación utilizando una población de pacientes sintéticos, evaluando los resultados con estadísticos de primer orden y algunoss específicos como el índice de riesgo de Kovatchev, para después comparar estos resultados con los obtenidos por otrostodos de control anteriores. Los resultados demuestran que el control borroso (FBPC) mejora el control glucémico con respecto a un sistema predictivo experto basado en reglas booleanas (pBRES). El FBPC consigue reducir siempre la glucosa máxima y aumentar la mínima respecto del pBRES pero es en terapias desajustadas, donde el FBPC es especialmente robusto, hace descender la glucosa máxima 8,64 mg/dl, el uso de insulina es 3,92 UI menor, aumenta la glucosa mínima 3,32 mg/dl y lleva al rango de glucosa 80 – 110 mg/dl 15,33 muestrass. Por lo tanto se puede concluir que el FBPC realiza un mejor control glucémico que el controlador pBRES haciéndole especialmente efectivo, robusto y seguro en condiciones de desajustes de terapia basal y con gran capacidad de mejora futura. SUMMARY The diabetes mellitus is a metabolic disorder caused by a poor or null insulin secretion or a reduced sensibility to insulin. Diabetes is a chronic disease with a higher prevalence in the industrialized countries, mainly due to obesity, the sedentary life and endocrine disfunctions connected with the pancreas. Type 1 diabetes is a self-immune disease where the beta cells of the pancreas, which are the responsible of secreting insulin, are damaged. Hence, it is necessary an exogenous delivery of insulin. The Type 1 diabetic patient has to follow a therapy with subcutaneous insulin administration which should be adjusted to his/her metabolic needs and life style. This therapy tries to mimic the insulin profile of a non-pathological pancreas. Current technology lets the development of the so-called endocrine artificial pancreas that would provide accuracy, efficiency and safety to patients, in regards to the glycemic control normalization and reduction of the risk of hypoglycemic. In addition, it would help the patient not to be so concerned about his disease. The artificial pancreas has a continuous glucose sensor, an insulin infusion pump and a control algorithm, that calculates the insulin infusion using the glucose as main information. This project presents a method of control in semi-closed-loop, through an expert fuzzy system based on rules. The fuzzy regulation is based on the human language ambiguity. This uncertainty serves for construction of some rules that represent the human language besides it is the system that controls a process, in this case the glucoregulatory system. This project is focus on the design of a fuzzy controller that, using variables like glucose insulin and diet, will be able to restore the pancreas endocrine function with technology. The algorithm assessment has mainly been done through experiments in simulation using a population of synthetic patients, evaluating the results with first order statistical parameters and some other more specific such as the Kovatchev risk index, to compare later these results with the ones obtained in others previous methods of control. The results demonstrate that the fuzzy control (FBPC) improves the glycemic control connected with a predictive expert system based on Booleans rules (pBRES). The FBPC is always able to reduce the maximum level of glucose and increase the minimum level as compared with pBRES but it is in unadjusted therapies where FBPC is especially strong, it manages to decrease the maximum level of glucose and insulin used by 8,64 mg/dl and 3,92 UI respectively, also increases the value of minimum glucose by 3,32 mg/dl, getting 15,33 samples more inside the 80-110 mg/dl glucose rank. Therefore we can conclude that FBPC achieves a better glycemic control than the controller pBRES doing it especially effective, robust and safe in conditions of mismatch basal therapy and with a great capacity for future improvements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the major challenges in evolutionary robotics is constituted by the need of the robot being able to make decisions on its own, in accordance with the multiple tasks programmed, optimizing its timings and power. In this paper, we present a new automatic decision making mechanism for a robot guide that allows the robot to make the best choice in order to reach its aims, performing its tasks in an optimal way. The election of which is the best alternative is based on a series of criteria and restrictions of the tasks to perform. The software developed in the project has been verified on the tour-guide robot Urbano. The most important aspect of this proposal is that the design uses learning as the means to optimize the quality in the decision making. The modeling of the quality index of the best choice to perform is made using fuzzy logic and it represents the beliefs of the robot, which continue to evolve in order to match the "external reality”. This fuzzy system is used to select the most appropriate set of tasks to perform during the day. With this tool, the tour guide-robot prepares its agenda daily, which satisfies the objectives and restrictions, and it identifies the best task to perform at each moment. This work is part of the ARABOT project of the Intelligent Control Research Group at the Universidad Politécnica de Madrid to create "awareness" in a robot guide.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os sistemas elétricos de potência modernos apresentam inúmeros desafios em sua operação. Nos sistemas de distribuição de energia elétrica, devido à grande ramificação, presença de extensos ramais monofásicos, à dinâmica das cargas e demais particularidades inerentes, a localização de faltas representa um dos maiores desafios. Das barreiras encontradas, a influência da impedância de falta é uma das maiores, afetando significativamente a aplicação dostodos tradicionais na localização, visto que a magnitude das correntes de falta é similar à da corrente de carga. Neste sentido, esta tese objetivou desenvolver um sistema inteligente para localização de faltas de alta impedância, o qual foi embasado na aplicação da técnica de decomposição por componentes ortogonais no pré-processamento das variáveis e inferência fuzzy para interpretar as não-linearidades do Sistemas de Distribuição com presença de Geração Distribuída. Os dados para treinamento do sistema inteligente foram obtidos a partir de simulações computacionais de um alimentador real, considerando uma modelagem não-linear da falta de alta impedância. O sistema fuzzy resultante foi capaz de estimar as distâncias de falta com um erro absoluto médio inferior a 500 m e um erro absoluto máximo da ordem de 1,5 km, em um alimentador com cerca de 18 km de extensão. Tais resultados equivalem a um grau de exatidão, para a maior parte das ocorrências, dentro do intervalo de ±10%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper explores the use of the optimization procedures in SAS/OR software with application to the ordered weight averaging (OWA) operators of decision-making units (DMUs). OWA was originally introduced by Yager (IEEE Trans Syst Man Cybern 18(1):183-190, 1988) has gained much interest among researchers, hence many applications such as in the areas of decision making, expert systems, data mining, approximate reasoning, fuzzy system and control have been proposed. On the other hand, the SAS is powerful software and it is capable of running various optimization tools such as linear and non-linear programming with all type of constraints. To facilitate the use of OWA operator by SAS users, a code was implemented. The SAS macro developed in this paper selects the criteria and alternatives from a SAS dataset and calculates a set of OWA weights. An example is given to illustrate the features of SAS/OWA software. © Springer-Verlag 2009.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Matching method of heavy truck-rear air suspensions is discussed, and a fuzzy control strategy which improves both ride comfort and road friendliness of truck by adjusting damping coefficients of the suspension system is found. In the first place, a Dongfeng EQ1141G7DJ heavy truck’s ten DOF whole vehicle-road model was set up based on Matlab/Simulink and vehicle dynamics. Then appropriate passive air suspensions were chosen to replace the original rear leaf springs of the truck according to truck-suspension matching criterions, consequently, the stiffness of front leaf springs were adjusted too. Then the semi-active fuzzy controllers were designed for further enhancement of the truck’s ride comfort and the road friendliness. After the application of semi-active fuzzy control strategy through simulation, is was indicated that both ride comfort and road friendliness could be enhanced effectively under various road conditions. The strategy proposed may provide theory basis for design and development of truck suspension system in China.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Power system stabilizers (PSS) work well at the particular network configuration and steady state conditions for which they were designed. Once conditions change, their performance degrades. This can be overcome by an intelligent nonlinear PSS based on fuzzy logic. Such a fuzzy logic power system stabilizer (FLPSS) is developed, using speed and power deviation as inputs, and provides an auxiliary signal for the excitation system of a synchronous motor in a multimachine power system environment. The FLPSS's effect on the system damping is then compared with a conventional power system stabilizer's (CPSS) effect on the system. The results demonstrate an improved system performance with the FLPSS and also that the FLPSS is robust

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a new approach to the design of a rough fuzzy controller for the control loop of the SVC (static VAR system) in a two area power system for stability enhancement with particular emphasis on providing effective damping for oscillatory instabilities. The performances of the rough fuzzy and the conventional fuzzy controller are compared with that of the conventional PI controller for a variety of transient disturbances, highlighting the effectiveness of the rough fuzzy controller in damping the inter-area oscillations. The effect of the rough fuzzy controller in improving the CCT (critical clearing time) of the two area system is elaborated in this paper as well.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper focuses on the implementation of the TS (Tagaki-Sugino) fuzzy controller for the active power and the DC capacitor voltage control of the Doubly Fed Induction Generator (DFIG) based wind generator. DFIG system is represented by a third-order model where electromagnetic transients of the stator are neglected. The effectiveness of the TS-fuzzy controller on the rotor speed oscillations and the DC capacitor voltage variations of the DFIG damping controller on converter ratings of the DFIG system is also investigated. The results of the time domain simulation studies are presented to elucidate the effectiveness of the TS-fuzzy controller compared with conventional PI controller in the DFIG system. The proposed TS-fuzzy controller can improve the fault ride through capability of DFIG compared to the conventional PI controller

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multi-Objective optimization for designing of a benchmark cogeneration system known as CGAM cogeneration system has been performed. In optimization approach, the thermoeconomic and Environmental aspects have been considered, simultaneously. The environmental objective function has been defined and expressed in cost terms. One of the most suitable optimization techniques developed using a particular class of search algorithms known as; Multi-Objective Particle Swarm Optimization (MOPSO) algorithm has been used here. This approach has been applied to find the set of Pareto optimal solutions with respect to the aforementioned objective functions. An example of fuzzy decision-making with the aid of Bellman-Zadeh approach has been presented and a final optimal solution has been introduced.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Modern power systems have become more complex due to the growth in load demand, the installation of Flexible AC Transmission Systems (FACTS) devices and the integration of new HVDC links into existing AC grids. On the other hand, the introduction of the deregulated and unbundled power market operational mechanism, together with present changes in generation sources including connections of large renewable energy generation with intermittent feature in nature, have further increased the complexity and uncertainty for power system operation and control. System operators and engineers have to confront a series of technical challenges from the operation of currently interconnected power systems. Among the many challenges, how to evaluate the steady state and dynamic behaviors of existing interconnected power systems effectively and accurately using more powerful computational analysis models and approaches becomes one of the key issues in power engineering. The traditional computing techniques have been widely used in various fields for power system analysis with varying degrees of success. The rapid development of computational intelligence, such as neural networks, fuzzy systems and evolutionary computation, provides tools and opportunities to solve the complex technical problems in power system planning, operation and control.