984 resultados para Susceptibility gene


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The potential effects of the E1A gene products on the promoter activities of neu were investigated. Transcription of the neu oncogene was found to be strongly repressed by the E1A gene products and this requires that conserved region 2 of the E1A proteins. The target for E1A repression was localized within a 140 base pair (bp) DNA fragment in the upstream region of the neu promoter. To further study if this transcriptional repression of neu by E1A can inhibit the transforming ability of the neu transformed cells, the E1A gene was introduced into the neu oncogene transformed B104-1-1 cells and developed B-E1A cell lines that express E1A proteins. These B-E1A stable transfectants have reduced transforming activity compared to the parental B104-1-1 cell line and we conclude that E1A can suppress the transformed phenotypes of the neu oncogene transformed cells via transcriptional repression of neu.^ To study the effects of E1A on metastasis, we first introduced the mutation-activated rat neu oncogene into 3T3 cells and showed that both the neu oncogene transformed NIH3T3 cells and Swiss Webster 3T3 cells exhibited metastatic properties in vitro and in vivo, while their parental 3T3 cells did not. Additionally, the neu-specific monoclonal antibody 7.16.4, which can down regulate neu-encoded p185 protein, effectively reduced the metastatic properties induced by neu. To investigate if E1A can reduce the metastatic potential of neu-transformed cells, we also compared the metastatic properties of B-E1A cell lines and B104-1-1 cell. B-E1A cell lines showed reduced invasiveness and lung colonization than the parental neu transformed B104-1-1 cells. We conclude that E1A gene products also have inhibitory effect on the metastatic phenotypes of the neu oncogene transformed cells.^ The product of human retinoblastoma (RB) susceptibility gene has been shown to complex with E1A gene products and is speculated to regulate gene expression. We therefore investigated in E1A-RB interaction might be involved in the regulation of neu oncogene expression. We found that the RB gene product can decrease the E1A-mediated repression of neu oncogene and the E1A binding region of the RB protein is required for the derepression function. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alterations in pathways mediated by retinoblastoma susceptibility gene (RB) product are among the most common in human cancer. Mice with a single copy of the Rb gene are shown to develop a syndrome of multiple neuroendocrine neoplasia. The earliest Rb-deficient atypical cells were identified in the intermediate and anterior lobes of the pituitary, the thyroid and parathyroid glands, and the adrenal medulla within the first 3 months of postnatal development. These cells form gross tumors with various degrees of malignancy by postnatal day 350. By age of 380 days, 84% of Rb+/− mice exhibited lung metastases from C-cell thyroid carcinomas. Expression of a human RB transgene in the Rb+/− mice suppressed carcinogenesis in all tissues studied. Of particular clinical relevance, the frequency of lung metastases also was reduced to 12% in Rb+/− mice by repeated i.v. administration of lipid-entrapped, polycation-condensed RB complementary DNA. Thus, in spite of long latency periods during which secondary alterations can accumulate, the initial loss of Rb function remains essential for tumor progression in multiple types of neuroendocrine cells. Restoration of RB function in humans may prove an effective general approach to the treatment of RB-deficient disseminated tumors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have analyzed the expression of the breast cancer susceptibility gene, Brca2, in mammary epithelial cells as a function of proliferation and differentiation. Our results demonstrate that Brca2 mRNA expression is tightly regulated during mammary epithelial proliferation and differentiation, and that this regulation occurs coordinately with Brca1. Specifically, Brca2 mRNA expression is up-regulated in rapidly proliferating cells; is down-regulated in response to serum deprivation; is expressed in a cell cycle-dependent manner, peaking at the G1/S boundary; and is up-regulated in differentiating mammary epithelial cells in response to glucocorticoids. In each case, an identical pattern of expression was observed for Brca1. These results indicate that proliferative stimuli modulate the mRNA expression of these two breast cancer susceptibility genes. In addition, the coordinate regulation of Brca1 and Brca2 revealed by these experiments suggests that these genes are induced by, and may function in, overlapping regulatory pathways involved in the control of cell proliferation and differentiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cyclin E is an important regulator of cell cycle progression that together with cyclin-dependent kinase (cdk) 2 is crucial for the G1/S transition during the mammalian cell cycle. Previously, we showed that severe overexpression of cyclin E protein in tumor cells and tissues results in the appearance of lower molecular weight isoforms of cyclin E, which together with cdk2 can form a kinase complex active throughout the cell cycle. In this study, we report that one of the substrates of this constitutively active cyclin E/cdk2 complex is retinoblastoma susceptibility gene product (pRb) in populations of breast cancer cells and tissues that also overexpress p16. In these tumor cells and tissues, we show that the expression of p16 and pRb is not mutually exclusive. Overexpression of p16 in these cells results in sequestering of cdk4 and cdk6, rendering cyclin D1/cdk complexes inactive. However, pRb appears to be phosphorylated throughout the cell cycle following an initial lag, revealing a time course similar to phosphorylation of glutathione S-transferase retinoblastoma by cyclin E immunoprecipitates prepared from these synchronized cells. Hence, cyclin E kinase complexes can function redundantly and replace the loss of cyclin D-dependent kinase complexes that functionally inactivate pRb. In addition, the constitutively overexpressed cyclin E is also the predominant cyclin found in p107/E2F complexes throughout the tumor, but not the normal, cell cycle. These observations suggest that overexpression of cyclin E in tumor cells, which also overexpress p16, can bypass the cyclin D/cdk4-cdk6/p16/pRb feedback loop, providing yet another mechanism by which tumors can gain a growth advantage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Functional inactivation of the tumor susceptibility gene tsg101 in NIH 3T3 fibroblasts results in cellular transformation and the ability to form metastatic tumors in nude mice. The N-terminal region of tsg101 protein is structurally similar to the catalytic domain of ubiquitin-conjugating enzymes, suggesting a potential role of tsg101 in ubiquitin-mediated protein degradation. The C-terminal domain of TSG101 can function as a repressor of transcription. To investigate the physiological function of tsg101, we generated a null mutation of the mouse gene by gene targeting. Homozygous tsg101−/− embryos fail to develop past day 6.5 of embryogenesis (E6.5), are reduced in size, and do not form mesoderm. Mutant embryos show a decrease in cellular proliferation in vivo and in vitro but no increase in apoptosis. Although levels of p53 transcripts were not affected in tsg101−/− embryos, p53 protein accumulated dramatically, implying altered posttranscriptional control of p53. In addition, transcription of the p53 effector, cyclin-dependent kinase inhibitor p21WAF-1/CIP-1, was increased 5- to 10-fold, whereas activation of MDM2 transcription secondary to p53 elevation was not observed. Introduction of a p53 null mutation into tsg101−/− embryos rescued the gastrulation defect and prolonged survival until E8.5. These results demonstrate that tsg101 is essential for the proliferative burst before the onset of gastrulation and establish a functional connection between tsg101 and the p53 pathway in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cross-sectional positron emission tomography (PET) studies find that cognitively normal carriers of the apolipoprotein E (APOE) ɛ4 allele, a common Alzheimer's susceptibility gene, have abnormally low measurements of the cerebral metabolic rate for glucose (CMRgl) in the same regions as patients with Alzheimer's dementia. In this article, we characterize longitudinal CMRgl declines in cognitively normal ɛ4 heterozygotes, estimate the power of PET to test the efficacy of treatments to attenuate these declines in 2 years, and consider how this paradigm could be used to efficiently test the potential of candidate therapies for the prevention of Alzheimer's disease. We studied 10 cognitively normal ɛ4 heterozygotes and 15 ɛ4 noncarriers 50–63 years of age with a reported family history of Alzheimer's dementia before and after an interval of approximately 2 years. The ɛ4 heterozygotes had significant CMRgl declines in the vicinity of temporal, posterior cingulate, and prefrontal cortex, basal forebrain, parahippocampal gyrus, and thalamus, and these declines were significantly greater than those in the ɛ4 noncarriers. In testing candidate primary prevention therapies, we estimate that between 50 and 115 cognitively normal ɛ4 heterozygotes are needed per active and placebo treatment group to detect a 25% attenuation in these CMRgl declines with 80% power and P = 0.005 in 2 years. Assuming these CMRgl declines are related to the predisposition to Alzheimer's dementia, this study provides a paradigm for testing the potential of treatments to prevent the disorder without having to study thousands of research subjects or wait many years to determine whether or when treated individuals develop symptoms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The retinoblastoma susceptibility gene (Rb) participates in controlling the G1/S-phase transition, presumably by binding and inactivating E2F transcription activator family members. Mouse embryonic fibroblasts (MEFs) with no, one, or two inactivated Rb genes were used to determine the specific contributions of Rb protein to cell cycle progression and gene expression. MEFs lacking both Rb alleles (Rb-/-) entered S phase in the presence of the dihydrofolate reductase inhibitor methotrexate. Two E2F target genes, dihydrofolate reductase and thymidylate synthase, displayed elevated mRNA and protein levels in Rb- MEFs. Since absence of functional Rb protein in MEFs is sufficient for S-phase entry under growth-limiting conditions, these data indicate that the E2F complexes containing Rb protein, and not the Rb-related proteins p107 and p130, may be rate limiting for the G1/S transition. Antineoplastic drugs caused accumulation of p53 in the nuclei of both Rb+/+ and Rb-/- MEFs. While p53 induction led to apoptosis in Rb-/- MEFs, Rb+/- and Rb+/+ MEFs underwent cell cycle arrest without apoptosis. These results reveal that diverse growth signals work through Rb to regulate entry into S phase, and they indicate that absence of Rb protein produces a constitutive DNA replication signal capable of activating a p53-associated apoptotic response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BRCA1 is a breast/ovarian cancer susceptibility gene on human chromosome 17q21. We describe a complete and detailed physical map of a 500-kb region of genomic DNA containing the BRCA1 gene and the partial cloning in phage P1 artificial chromosomes. Approximately 70 exons were isolated from this region, 11 of which were components of the BRCA1 gene. Analysis of the other exons revealed a rho-related G protein and the interferon-induced leucine-zipper protein IFP-35.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The breast cancer susceptibility gene Brca1 encodes a large multi-functional protein which is implicated as a caretaker of the genome, through its role in regulation of DNA damage response pathways, including apoptosis. Here we show that in mice expressing a dominant-negative Brca1 transgene on a BALB/c background, vaginal entrance remodeling is inhibited, and that the incidence of this phenotype is increased on a p53 +/- genotype. Given that this developmental process is mediated primarily by apoptosis, we hypothesized that disruption of BRCA1 may confer a resistance to apoptosis in normal epithelial cells. Consistent with this, we show that expression of this transgene in vitro leads to resistance to ionizing radiation induced cell killing in mammary epithelial cells. This is the first time that BRCA1 has been implicated in an apoptosis-mediated normal developmental process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Complement factor H (CFH) is a major susceptibility gene for age-related macular degeneration (AMD); however, its impact on AMD pathobiology is unresolved. Here, the role of CFH in the development of AMD pathology in vivo was interrogated by analyzing aged Cfh+/- and Cfh-/- mice fed a high fat, cholesterol-enriched diet. Strikingly, decreased levels of CFH led to increased sub-retinal pigmented epithelium (RPE) deposit formation, specifically basal laminar deposits, following high fat diet. Mechanistically, our data show that deposits are due to CFH competition for lipoprotein binding sites in Bruch’s membrane. Interestingly and despite sub-RPE deposit formation occurring in both Cfh+/- and Cfh-/- mice, RPE damage accompanied by loss of vision occurred only in old Cfh+/- mice. We demonstrate that such pathology is a function of excess complement activation and C5a production, associated with monocyte recruitment, in Cfh+/- mice versus complement deficiency in Cfh-/- animals. Due to the CFH dependent increase in sub-RPE deposit height we interrogated the potential of CFH as a novel regulator of Bruch’s membrane lipoprotein binding and show, using human Bruch’s membrane explants, that CFH removes endogenous human lipoproteins in aged donors. Interestingly, although the CFH H402 variant shows altered binding to BrM, this does not affect its ability to remove endogenous lipoproteins. This new understanding of the complicated interactions of CFH in AMD-like pathology provides an improved foundation for the development of targeted therapies for AMD.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Interleukin 8 (IL-8) is a chemokine related to the initiation and amplification of acute and chronic inflammatory processes. Polymorphisms in the IL8 gene have been associated with inflammatory diseases. We investigated whether the - 845(T/C) and - 738(T/A) single nucleotide polymorphisms (SNPs) in the IL8 gene, as well as the haplotypes they form together with the previously investigated -353(A/T), are associated with susceptibility to chronic periodontitis. Methods: DNA was extracted from buccal epithelial cells of 400 Brazilian individuals (control n =182, periodontitis n=218). SNPs were genotyped by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Disease associations were analyzed by the chi(2) test, Exact Fisher test and Clump program. Haplotypes were reconstructed using the expectation-maximization algorithm and differences in haplotype distribution between the groups were analyzed to estimate genetic susceptibility for chronic periodontitis development. Results: When analyzed individually, no SNPs showed different distributions between the control and chronic periodontitis groups. Although, nonsmokers carrying the TTA/CAT (OR = 2.35, 95% CI = 1.03-5.36) and TAT/CTA (OR= 6.05, 95% CI = 1.32-27.7) haplotypes were genetically susceptible to chronic periodontitis. The ITT/TAA haplotype was associated with protection against the development of periodontitis (for nonsmokers OR= 0.22, 95% CI = 0.10-0.46). Conclusion: Although none of the investigated SNPs in the IL8 gene was individually associated with periodontitis, some haplotypes showed significant association with susceptibility to, or protection against, chronic periodontitis in a Brazilian population. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Visceral leishmaniasis (VL) or Kala-azar is a serious protozoan infectious disease caused by an obligate intracellular parasite. Cytokines have a major role in determining progression and severity of clinical manifestations in VL. We investigated polymorphisms in the TGFB1 and IL8 genes, which are cytokines known to have a role in onset and severity of the disease. Polymorphisms at TGFB1 -509 C/T and +869 T/C, and IL8 -251 A/T were analyzed by a PCR-RFLP technique, in 198 patients with VL, 98 individuals with asymptomatic infection positive for a delayed-type hypersensitivity test (DTH+) and in 101 individuals with no evidence of infection (DTH-). The presence of the T allele in position -509 of the TGFB1 gene conferred a two-fold risk to develop infection both when including those with clinical symptoms (DTH+ and VL, grouped) or when considering DTH+ only, respectively p = 0.007, OR = 1.9 [1.19-3.02] and p = 0.012, OR = 2.01 [1.17-3.79], when compared with DTH- individuals. In addition, occurrence of hemorrhage was associated with TGFB1 -509 T allele. We suggest that the -509 T allele of the TGFB1 gene, a cytokine with a biologically relevant role in the natural history of the disease, may contribute to overall susceptibility to infection by Leishmania and to severity of the clinical disease. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chagas` disease, caused by Trypanosoma cruzi, is an inflammatory disorder leading to chronic Chagas cardiomyopathy (CCC). Only one third of T cruzi-infected individuals progress to CCC while the others are considered asymptomatic (ASY). The human inhibitory kappa B-like gene (KBLINFKBIL1), homologous to the I kappa B family of proteins that regulate the NF kappa B family of transcription factors, is suggested as a putative inhibitor of NFKB. We investigated two functional polymorphisms, -62A/T and -262A/G, in the promoter of IKBL by PCR-RFLP analysis in 169 patients with CCC and 76 ASY. Genotype distributions for both -62A/T and -262A/G differed between the CCC and ASY (X-2 = 7.3; P = 0.025 and X-2 = 6.8; P = 0.03, respectively). Subjects, homozygous for the -62A allele, had three-fold risk of developing CCC compared with those carrying the TT genotype (P = 0.0095; Odds Ratio [OR] = 2.9; [95% CI 1.2-7.3]). Similar trend was observed for the -262A homozygotes (P = 0.005; OR = 2.7 [95% CI 1.3-6.0]. The haplotype -262A -62A was prevalent in patients with CCC (40% versus 24%; OR 2.1 [95% C1 1.4-3.3j; Pc = 0.00 14). The I kappa BL locus itself or another critical gene in this region may confer susceptibility to the development of CCC. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The MHC region (6p21) aggregates the major genes that contribute to susceptibility to type 1 diabetes (T1D). Three additional relevant susceptibility regions mapped on chromosomes 1p13 (PTPN22), 2q33 (CTLA-4), and 11p15 (insulin) have also been described by linkage studies. To evaluate the contribution of these susceptibility regions and the chromosomes that house these regions, we performed a large-scale differential gene expression on lymphomononuclear cells of recently diagnosed T1D patients, pinpointing relevant modulated genes clustered in these regions and their respective chromosomes. A total of 4608 cDNAs from the IMAGE library were spotted onto glass slides using robotic technology. Statistical analysis was carried out using the SAM program, and data regarding gene location and biological function were obtained at the SOURCE, NCBI, and FATIGO programs. Three induced genes were observed spanning around the MHC region (6p21-6p23), and seven modulated genes (5 repressed and 2 repressed) were seen spanning around the 6q21-24 region. Additional modulated genes were observed in and around the 1p13, 2q33, and 11p15 regions. Overall, modulated genes in these regions were primarily associated with cellular metabolism, transcription factors and signaling transduction. The differential gene expression characterization may identify new genes potentially involved with diabetes pathogenesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Activation of the immune response in hantavirus cardiopulmonary syndrome (HCPS) leads to a high TNF production, probably contributing to the disease. The polymorphic TNF2 allele (TNF -308G/A) has been associated with increased cytokine production. We investigated the association of the TNF2 allele with the outcome of hantavirus infection in Brazilian patients. A total of 122 hantavirus-exposed individuals (26 presenting HCPS and 96 only hantavirus seroconversion) were studied. The TNF2 allele was more frequently found in HCPS patients than in individuals with positive serology for hantavirus but without a history of HCPS illness, suggesting that the TNF2 allele could represent a risk factor for developing HCPS.