990 resultados para Surface Integrity
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study assessed the in vitro influence of surface sealing on the surface roughness of a posterior resin composite before and after tooth-brushing. Thirty. specimens (13 nun diameter x 1 mm high) were fabricated from Filtek-P60 resin composite and randomly assigned to three groups (n=10): a non-sealed control and two groups sealed with one of the tested materials-a surface-penetrating sealant (Protect-it!-PI) and a one bottle adhesive system (Single Bond-SB). The samples were subjected to a surface roughness reading to determine the initial roughness, then submitted to simulated toothbrushing with 35,600 cycles for 100 minutes. Specimens were then cleaned and a post-abrasion surface roughness reading accomplished. Means (pm), recorded before (B) and after (A) toothbrushing, and standard deviations were: Control-(B): 0.032 (+/-0.005), (A): 0.054 (+/-0.005); PI-(B): 0.034 (+/-0.005), (A): 0.060 (+/-0.034); SB (B): 0.031 (+/-0.004), (A): 0.047 (+/-0.007). Data were tabulated and submitted to two-way ANOVA. No statistically significant difference was observed when the control and experimental groups were compared. However, a significant difference (p<0.05) was found between the measurements performed before and after toothbrushing. Based on these results, it may be concluded that using either a surface penetrating sealant or a one bottle adhesive system did not provide the optimization of superficial integrity. The use of a dentifrice and toothbrush resulted in significant alterations to the surface smoothness of the resin composite.
Resumo:
In horses, spermatogenesis normally occurs at an average intratesticular temperature of 35. °C; therefore, mechanisms for testicular thermoregulation are essential. Measuring the scrotal surface temperature by thermography is one of the methodologies used to evaluate the effectiveness of testicular thermoregulation. The objective of this study was to determine the relationship between the control of scrotal surface temperature and sperm quality in horses of different ages. In total, 24 Quarter Horse stallions were divided into three groups: YS (young stallions), AS (adult stallions) and OS (old stallions). Initially, we calculated the testicular volume (TV) and evaluated various aspects of the semen (sperm kinetics, plasma membrane integrity and sperm morphology) for all the animals. We also evaluated rectal temperature (RT), body surface temperature (BST,) and average scrotal surface temperature in the testicular region (SST) before (M0) and after sun exposure (M1). Differences were observed (p<0.05) between the RT and BST before and after sun exposure in all three groups. However, there were no differences (p>0.05) in the SST values at these two time points, thus demonstrating the efficiency of the mechanisms for testicular thermoregulation. The SST was similar (p>0.05) among all three groups. Based on these results, we conclude that fertile stallions of different age groups are able to maintain SST and measuring the heat radiating from the scrotum using a digital infrared thermographer. We can also conclude that measuring the heat radiating from the scrotum using a digital infrared thermographer is a practical and efficient tool for monitoring SST in horses. © 2013 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study investigated the uptake, kinetics and cellular distribution of different surface coated quantum dots (QDs) before relating this to their toxicity. J774.A1 cells were treated with organic, COOH and NH2 (PEG) surface coated QDs (40 nM). Model 20 nm and 200 nm COOH-modified coated polystyrene beads (PBs) were also examined (50 microg ml(-1)). The potential for uptake of QDs was examined by both fixed and live cell confocal microscopy as well as by flow cytometry over 2 h. Both the COOH 20 nm and 200 nm PBs were clearly and rapidly taken up by the J774.A1 cells, with uptake of 20 nm PBs being relatively quicker and more extensive. Similarly, COOH QDs were clearly taken up by the macrophages. Uptake of NH2 (PEG) QDs was not detectable by live cell imaging however, was observed following 3D reconstruction of fixed cells, as well as by flow cytometry. Cells treated with organic QDs, monitored by live cell imaging, showed only a small amount of uptake in a relatively small number of cells. This uptake was insufficient to be detected by flow cytometry. Imaging of fixed cells was not possible due to a loss in cell integrity related to cytotoxicity. A significant reduction (p<0.05) in the fluorescent intensity in a cell-free environment was found with organic QDs, NH2 (PEG) QDs, 20 nm and 200 nm PBs at pH 4.0 (indicative of an endosome) after 2 h, suggesting reduced stability. No evidence of exocytosis was found over 2 h. These findings confirm that surface coating has a significant influence on the mode of NP interaction with cells, as well as the subsequent consequences of that interaction.
Resumo:
BACKGROUND Nebulized surfactant therapy has been proposed as an alternative method of surfactant administration. The use of a perforated vibrating membrane nebulizer provides a variety of advantages over conventional nebulizers. We investigated the molecular structure and integrity of poractant alfa pre- and post-nebulization. METHOD Curosurf® was nebulized using an Investigational eFlow® Nebulizer System. Non-nebulized surfactant ("NN"), recollected surfactant droplets from nebulization through an endotracheal tube ("NT") and nebulization of surfactant directly onto a surface ("ND") were investigated by transmission electron microscopy. Biophysical characteristics were assessed by the Langmuir-Wilhelmy balance and the Captive Bubble Surfactometer. RESULTS Volume densities of lamellar body-like forms (LBL) and multi-lamellar forms (ML) were high for "NN" and "NT" samples (38.8% vs. 47.7% for LBL and 58.2% vs. 47.8% for ML). In the "ND" sample, we found virtually no LBL's, ML's (72.6%) as well as uni-lamellar forms (16.4%) and a new structure, the "garland-like" forms (9.4%). Surface tension for "NN" and "NT" was 23.33 ± 0.29 and 25.77 ± 1.12 mN/m, respectively. Dynamic compression-expansion cycling minimum surface tensions were between 0.91 and 1.77 mN/m. CONCLUSION The similarity of surfactant characteristics of nebulized surfactant via a tube and the non-nebulized surfactant suggests that vibrating membrane nebulizers are suitable for surfactant nebulization. Alterations in surfactant morphology and characteristics after nebulization were transient. A new structural subtype of surfactant was identified. Pediatr Pulmonol. 2014; 49:348-356. © 2013 Wiley Periodicals, Inc.
Resumo:
The extravasation of CD4(+) effector/memory T cells (TEM cells) across the blood-brain barrier (BBB) is a crucial step in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) or multiple sclerosis (MS). Endothelial ICAM-1 and ICAM-2 are essential for CD4(+) TEM cell crawling on the BBB prior to diapedesis. Here, we investigated the influence of cell surface levels of endothelial ICAM-1 in determining the cellular route of CD4(+) TEM -cell diapedesis across cytokine treated primary mouse BBB endothelial cells under physiological flow. Inflammatory conditions, inducing high levels of endothelial ICAM-1, promoted rapid initiation of transcellular diapedesis of CD4(+) T cells across the BBB, while intermediate levels of endothelial ICAM-1 favored paracellular CD4(+) T-cell diapedesis. Importantly, the route of T-cell diapedesis across the BBB was independent of loss of BBB barrier properties. Unexpectedly, a low number of CD4(+) TEM cells was found to cross the inflamed BBB in the absence of endothelial ICAM-1 and ICAM-2 via an obviously alternatively regulated transcellular pathway. In vivo, this translated to the development of ameliorated EAE in ICAM-1(null) //ICAM-2(-/-) C57BL/6J mice. Taken together, our study demonstrates that cell surface levels of endothelial ICAM-1 rather than the inflammatory stimulus or BBB integrity influence the pathway of T-cell diapedesis across the BBB.
Resumo:
Mycoplasma mycoides subsp. capri (Mmc) and subsp. mycoides (Mmm) are important ruminant pathogens worldwide causing diseases such as pleuropneumonia, mastitis and septicaemia. They express galactofuranose residues on their surface, but their role in pathogenesis has not yet been determined. The M. mycoides genomes contain up to several copies of the glf gene, which encodes an enzyme catalysing the last step in the synthesis of galactofuranose. We generated a deletion of the glf gene in a strain of Mmc using genome transplantation and tandem repeat endonuclease coupled cleavage (TREC) with yeast as an intermediary host for the genome editing. As expected, the resulting YCp1.1-Δglf strain did not produce the galactofuranose-containing glycans as shown by immunoblots and immuno-electronmicroscopy employing a galactofuranose specific monoclonal antibody. The mutant lacking galactofuranose exhibited a decreased growth rate and a significantly enhanced adhesion to small ruminant cells. The mutant was also 'leaking' as revealed by a β-galactosidase-based assay employing a membrane impermeable substrate. These findings indicate that galactofuranose-containing polysaccharides conceal adhesins and are important for membrane integrity. Unexpectedly, the mutant strain showed increased serum resistance.
Resumo:
As a consequence of anthropogenic CO2-driven ocean acidification (OA), coastal waters are becoming increasingly challenging for calcifiers due to reductions in saturation states of calcium carbonate (CaCO3) minerals. The response of calcification rate is one of the most frequently investigated symptoms of OA. However, OA may also result in poor quality calcareous products through impaired calcification processes despite there being no observed change in calcification rate. The mineralogy and ultrastructure of the calcareous products under OA conditions may be altered, resulting in changes to the mechanical properties of calcified structures. Here, the warm water biofouling tubeworm, Hydroides elegans, was reared from larva to early juvenile stage at the aragonite saturation state (Omega A) for the current pCO2 level (ambient) and those predicted for the years 2050, 2100 and 2300. Composition, ultrastructure and mechanical strength of the calcareous tubes produced by those early juvenile tubeworms were examined using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and nanoindentation. Juvenile tubes were composed primarily of the highly soluble CaCO3 mineral form, aragonite. Tubes produced in seawater with aragonite saturation states near or below one had significantly higher proportions of the crystalline precursor, amorphous calcium carbonate (ACC) and the calcite/aragonite ratio dramatically increased. These alterations in tube mineralogy resulted in a holistic deterioration of the tube hardness and elasticity. Thus, in conditions where Omega A is near or below one, the aragonite-producing juvenile tubeworms may no longer be able to maintain the integrity of their calcification products, and may result in reduced survivorship due to the weakened tube protection.
Resumo:
Anthropogenic emissions of carbon dioxide are leading to decreases in pH and changes in the carbonate chemistry of seawater. Ocean acidification may negatively affect the ability of marine organisms to produce calcareous structures while also influencing their physiological responses and growth. The aim of this study was to evaluate the effects of reduced pH on the survival, growth and shell integrity of juveniles of two marine bivalves from the Northern Adriatic sea: the Mediterranean mussel Mytilus galloprovincialis and the striped venus clam Chamelea gallina. An outdoor flow-through plant was set up and two pH levels (natural seawater pH as a control, pH 7.4 as the treatment) were tested in long-term experiments. Mortality was low throughout the first experiment for both mussels and clams, but a significant increase, which was sensibly higher in clams, was observed at the end of the experiment (6 months). Significant decreases in the live weight (-26%) and, surprisingly, in the shell length (-5%) were observed in treated clams, but not in mussels. In the controls of both species, no shell damage was ever recorded; in the treated mussels and clams, damage proceeded via different modes and to different extents. The severity of shell injuries was maximal in the mussels after just 3 months of exposure to a reduced pH, whereas it progressively increased in clams until the end of the experiment. In shells of both species, the damaged area increased throughout the experiment, peaking at 35% in mussels and 11% in clams. The shell thickness of the treated and control animals significantly decreased after 3 months in clams and after 6 months in mussels. In the second experiment (3 months), only juvenile mussels were exposed to a reduced pH. After 3 months, the mussels at a natural pH level or pH 7.4 did not differ in their survival, shell length or live weight. Conversely, shell damage was clearly visible in the treated mussels from the 1st month onward. Monitoring the chemistry of seawater carbonates always showed aragonite undersaturation at 7.4 pH, whereas calcite undersaturation occurred in only 37% of the measurements. The present study highlighted the contrasting effects of acidification in two bivalve species living in the same region, although not exactly in the same habitat.
Resumo:
This paper describes a novel method to enhance current airport surveillance systems used in Advanced Surveillance Monitoring Guidance and Control Systems (A-SMGCS). The proposed method allows for the automatic calibration of measurement models and enhanced detection of nonideal situations, increasing surveillance products integrity. It is based on the definition of a set of observables from the surveillance processing chain and a rule based expert system aimed to change the data processing methods
Resumo:
The focus of the Children's Vaccine Initiative is to encourage the discovery of technology that will make vaccines more readily available to developing countries. Our strategy has been to genetically engineer plants so that they can be used as inexpensive alternatives to fermentation systems for production of subunit antigens. In this paper we report on the immunological response elicited in vivo by using recombinant hepatitis B surface antigen (rHBsAg) purified from transgenic tobacco leaves. The anti-hepatitis B response to the tobacco-derived rHBsAg was qualitatively similar to that obtained by immunizing mice with yeast-derived rHBsAg (commercial vaccine). Additionally, T cells obtained from mice primed with the tobacco-derived rHBsAg could be stimulated in vitro by the tobacco-derived rHBsAg, yeast-derived rHBsAg, and by a synthetic peptide that represents part of the a determinant located in the S region (139-147) of HBsAg. Further support for the integrity of the T-cell epitope of the tobacco-derived rHBsAg was obtained by testing the ability of the primed T cells to proliferate in vitro after stimulation with a monoclonal anti-idiotype and an anti-idiotype-derived peptide, both of which mimic the group-specific a determinant of HBsAg. In total, we have conclusively demonstrated that both B- and T-cell epitopes of HBsAg are preserved when the antigen is expressed in a transgenic plant.
Resumo:
The purpose of this guide is to assist investigators conducting geologic hazard assessments with the understanding, detection, and characterization of surface features related to subsidence from underground coal mining. Subsidence related to underground coal mining can present serious problems to new and/or existing infrastructure, utilities, and facilities. For example, heavy equipment driving over the ground surface during construction processes may punch into voids created by sinkholes or cracks, resulting in injury to persons and property. Abandoned underground mines also may be full of water, and if punctured, can flood nearby areas. Furthermore, the integrity of rigid structures such as buildings, dams and bridges may be compromised if mining subsidence results in differential movement at the ground surface. Subsidence of the ground surface is a phenomenon associated with the removal of material at depth, and may occur coincident with mining, gradually over time, or sometimes suddenly, long after mining operations have ceased (Gray and Bruhn, 1984). The spatial limits of underground coal mines may extend for great distances beyond the surface operations of a mine, in some cases more than 10 miles for an individual mine. When conducting geologic hazard assessments, several remote investigation methods can be used to observe surface features related to underground mining subsidence. LiDAR-derived DEMs are generally the most useful method available for identifying these features because the bare earth surface can be viewed. However, due to limitations in the availability of LiDAR data, other methods often need to be considered when investigating surface features related to underground coal mining subsidence, such as Google Earth and aerial imagery. Mine maps, when available, can be viewed in tandem with these datasets, potentially improving the confidence of any possible mining subsidence-related features observed remotely. However, maps for both active and abandoned mines may be incomplete or unavailable. Therefore, it is important to be able to recognize possible surface features related to underground mining subsidence. This guide provides examples of surface subsidence features related to the two principal underground coal mining methods used in the United States: longwall mining and room and pillar mining. The depth and type of mining, geologic conditions, hydrologic conditions, and time are all factors that may influence the type of features that manifest at the surface. This guide provides investigators a basic understanding about the size, character and conditions of various surface features that occur as a result of underground mining subsidence.
Resumo:
The 'ion-trapping' hypothesis suggests that the intracellular concentration of acidic non-steroidal anti-inflammatory drugs in gastric epithelial cells could be much higher than in the gastric lumen, and that such accumulation could contribute to their gastrotoxicity. Our aim was to examine the effect of the pH of the apical medium on the apical to basal transfer of the acidic drug indomethacin (pK a 4.5) across a gastric mucous epithelial cell monolayer, and to determine whether indomethacin accumulated in cells exposed to a low apical pH. Guinea-pig gastric mucous epithelial cells were grown on porous membrane culture inserts (Transwells®) for 72 h. Transfer and accumulation of [ 14C] indomethacin were assessed by scintillation counting. Transfer of [ 3H]mannitol and measurement of trans-epithelial electrical resistance were used to assess integrity of the monolayer. Distribution of [ 14C] urea was used to estimate the intracellular volume of the monolayer. The monolayer was not disrupted by exposure of the apical face to media of pH ≥ 3, or by indomethacin. Transfer of indomethacin (12 μM) to the basal medium increased with decreasing apical medium pH. The apparent permeability of the undissociated acid was estimated to be five times that of the anion. The intracellular concentration of indomethacin was respectively 5.3, 4.1 and 4.3 times that in the apical medium at pH 5.5, 4.5 and 3.0. In conclusion, this study represents the first direct demonstration that indomethacin accumulates in gastric epithelial cells exposed to low apical pH. However, accumulation of indomethacin was moderate and the predictions of the ion-trapping hypothesis were not met, probably due to the substantial permeability of anionic indomethacin across membranes. © 2006 Elsevier B.V. All rights reserved.
Resumo:
The uptake of anthropogenic emission of carbon dioxide is resulting in a lowering of the carbonate saturation state and a drop in ocean pH. Understanding how marine calcifying organisms such as coralline algae may acclimatize to ocean acidification is important to understand their survival over the coming century. We present the first long-term perturbation experiment on the cold-water coralline algae, which are important marine calcifiers in the benthic ecosystems particularly at the higher latitudes. Lithothamnion glaciale, after three months incubation, continued to calcify even in undersaturated conditions with a significant trend towards lower growth rates with increasing pCO2. However, the major changes in the ultra-structure occur by 589 µatm (i.e. in saturated waters). Finite element models of the algae grown at these heightened levels show an increase in the total strain energy of nearly an order of magnitude and an uneven distribution of the stress inside the skeleton when subjected to similar loads as algae grown at ambient levels. This weakening of the structure is likely to reduce the ability of the alga to resist boring by predators and wave energy with severe consequences to the benthic community structure in the immediate future (50 years).