1000 resultados para Supernovae: individual: SN 2005at


Relevância:

40.00% 40.00%

Publicador:

Resumo:

SN 2009ku, discovered by Pan-STARRS-1, is a Type Ia supernova (SN Ia), and a member of the distinct SN 2002cx-like class of SNe Ia. Its light curves are similar to the prototypical SN 2002cx, but are slightly broader and have a later rise to maximum in g. SN 2009ku is brighter (similar to 0.6 mag) than other SN 2002cx-like objects, peaking at M-V = -18.4 mag, which is still significantly fainter than typical SNe Ia. SN 2009ku, which had an ejecta velocity of similar to 2000 km s(-1) at 18 days after maximum brightness, is spectroscopically most similar to SN 2008ha, which also had extremely low-velocity ejecta. However, SN 2008ha had an exceedingly low luminosity, peaking at M-V = -14.2 mag, similar to 4 mag fainter than SN 2009ku. The contrast of high luminosity and low ejecta velocity for SN 2009ku is contrary to an emerging trend seen for the SN 2002cx class. SN 2009ku is a counterexample of a previously held belief that the class was more homogeneous than typical SNe Ia, indicating that the class has a diverse progenitor population and/or complicated explosion physics. As the first example of a member of this class of objects from the new generation of transient surveys, SN 2009ku is an indication of the potential for these surveys to find rare and interesting objects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present new optical and near-infrared (NIR) photometry and spectroscopy of the Type IIP supernova (SN), SN 2004et. In combination with already published data, this provides one of the most complete studies of optical and NIR data for any Type IIP SN from just after explosion to +500 d. The contribution of the NIR flux to the bolometric light curve is estimated to increase from 15 per cent at explosion to around 50 per cent at the end of the plateau and then declines to 40 per cent at 300 d. SN 2004et is one of the most luminous IIP SNe which has been well studied and characterized, and with a luminosity of log L = 42.3 erg s-1 and a 56Ni mass of 0.06 +/- 0.04 M-circle dot, it is two times brighter than SN 1999em. We provide parametrized bolometric corrections as a function of time since explosion for SN 2004et and three other IIP SNe that have extensive optical and NIR data. These can be used as templates for future events in optical and NIR surveys without full wavelength coverage. We compare the physical parameters of SN 2004et with those of other well-studied IIP SNe and find that the kinetic energies span a range of 1050-1051 erg. We compare the ejected masses calculated from hydrodynamic models with the progenitor masses and limits derived from pre-discovery images. Some of the ejected mass estimates are significantly higher than the progenitor mass estimates, with SN 2004et showing perhaps the most serious mass discrepancy. With the current models, it appears difficult to reconcile 100 d plateau lengths and high expansion velocities with the low ejected masses of 5-6 M-circle dot implied from 7-8 M-circle dot progenitors. The nebular phase is studied using very late-time Hubble Space Telescope photometry, along with optical and NIR spectroscopy. The light curve shows a clear flattening at 600 d in the optical and the NIR, which is likely due to the ejecta impacting on circumstellar material. We further show that the [O i] 6300, 6364 A line strengths in the nebular spectra of four Type IIP SNe imply ejected oxygen masses of 0.5-1.5 M-circle dot.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The only supernovae (SNe) to show gamma-ray bursts ( GRBs) or early x-ray emission thus far are overenergetic, broad- lined type Ic SNe ( hypernovae, HNe). Recently, SN 2008D has shown several unusual features: (i) weak x-ray flash (XRF), (ii) an early, narrow optical peak, (iii) disappearance of the broad lines typical of SN Ic HNe, and (iv) development of helium lines as in SNe Ib. Detailed analysis shows that SN 2008D was not a normal supernova: Its explosion energy (E approximate to 6 x 10(51) erg) and ejected mass [similar to 7 times the mass of the Sun ( M.)] are intermediate between normal SNe Ibc and HNe. We conclude that SN 2008D was originally a similar to 30 M. star. When it collapsed, a black hole formed and a weak, mildly relativistic jet was produced, which caused the XRF. SN 2008D is probably among the weakest explosions that produce relativistic jets. Inner engine activity appears to be present whenever massive stars collapse to black holes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Photometric and spectroscopic observations of the faint Supernovae (SNe) 2002kg and 2003gm, and their precursors, in NGC 2403 and NGC 5334, respectively, are presented. The properties of these SNe are discussed in the context of previously proposed scenarios for faint SNe: low-mass progenitors producing underenergetic SNe; SNe with ejecta constrained by a circumstellar medium; and outbursts of massive Luminous Blue Variables (LBVs). The last scenario has been referred to as 'Type V SNe', 'SN impostors' or 'fake SNe'.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The nearby Type Ia supernova SN 2011fe in M101 (cz=241 km s^-1) provides a unique opportunity to study the early evolution of a "normal" Type Ia supernova, its compositional structure, and its elusive progenitor system. We present 18 high signal-to-noise spectra of SN 2011fe during its first month beginning 1.2 days post-explosion and with an average cadence of 1.8 days. This gives a clear picture of how various line-forming species are distributed within the outer layers of the ejecta, including that of unburned material (C+O). We follow the evolution of C II absorption features until they diminish near maximum light, showing overlapping regions of burned and unburned material between ejection velocities of 10,000 and 16,000 km s^-1. This supports the notion that incomplete burning, in addition to progenitor scenarios, is a relevant source of spectroscopic diversity among SNe Ia. The observed evolution of the highly Doppler-shifted O I 7774 absorption features detected within five days post-explosion indicate the presence of O I with expansion velocities from 11,500 to 21,000 km s^-1. The fact that some O I is present above C II suggests that SN 2011fe may have had an appreciable amount of unburned oxygen within the outer layers of the ejecta.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Calculations of synthetic spectropolarimetry are one means to test multidimensional explosion models for Type Ia supernovae. In a recent paper, we demonstrated that the violent merger of a 1.1 and 0.9 M⊙ white dwarf binary system is too asymmetric to explain the low polarization levels commonly observed in normal Type Ia supernovae. Here, we present polarization simulations for two alternative scenarios: the sub-Chandrasekhar mass double-detonation and the Chandrasekhar mass delayed-detonation model. Specifically, we study a 2D double-detonation model and a 3D delayed-detonation model, and calculate polarization spectra for multiple observer orientations in both cases. We find modest polarization levels (<1 per cent) for both explosion models. Polarization in the continuum peaks at ∼0.1–0.3 per cent and decreases after maximum light, in excellent agreement with spectropolarimetric data of normal Type Ia supernovae. Higher degrees of polarization are found across individual spectral lines. In particular, the synthetic Si II λ6355 profiles are polarized at levels that match remarkably well the values observed in normal Type Ia supernovae, while the low degrees of polarization predicted across the O I λ7774 region are consistent with the non-detection of this feature in current data. We conclude that our models can reproduce many of the characteristics of both flux and polarization spectra for well-studied Type Ia supernovae, such as SN 2001el and SN 2012fr. However, the two models considered here cannot account for the unusually high level of polarization observed in extreme cases such as SN 2004dt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical UBVRI photometry and medium-resolution spectroscopy of the Type Ib supernova SN 2009jf, during the period from similar to -15 to +250 d, with respect to the B maximum are reported. The light curves are broad, with an extremely slow decline. The early post-maximum decline rate in the V band is similar to SN 2008D; however, the late-phase decline rate is slower than other Type Ib supernovae studied. With an absolute magnitude of M-V = -17.96 +/- 0.19 at peak, SN 2009jf is a normally bright supernova. The peak bolometric luminosity and the energy deposition rate via the 56Ni -> 56Co chain indicate that similar to 0.17+0.03(-0.03) M-circle dot of 56Ni was ejected during the explosion. The He i 5876 A line is clearly identified in the first spectrum of day similar to -15, at a velocity of similar to 16 000 km s-1. The O i] 6300-6364 A line seen in the nebular spectrum has a multipeaked and asymmetric emission profile, with the blue peak being stronger. The estimated flux in this line implies that greater than or similar to 1.34 M-circle dot oxygen was ejected. The slow evolution of the light curves of SN 2009jf indicates the presence of a massive ejecta. The high expansion velocity in the early phase and broader emission lines during the nebular phase suggest it to be an explosion with a large kinetic energy. A simple qualitative estimate leads to the ejecta mass of M-ej = 4-9 M-circle dot and kinetic energy E-K = 3-8 x 1051 erg. The ejected mass estimate is indicative of an initial main-sequence mass of greater than or similar to 20-25 M-circle dot.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the combined X-ray and radio observations of the type Ic SN 2002ap, using XMM-Newton TOO observation of M 74 and the Giant Metrewave Radio Telescope ( GMRT). We account for the presence of a nearby source in the pre-supernova Chandra field of view in our measurements of the X-ray flux (0.3-10 KeV) 5.2 days after the explosion. The X-ray spectrum is well fitted by a power law spectrum with photon index alpha = 2.6. Our results suggest that the prompt X-ray emission originates from inverse Compton scattering of photospheric thermal emission by energetic electrons. Radio observations with the GMRT at 610 MHz (8 days after the explosion) and 1420 MHz (70 days after the explosion) are combined with the high frequency VLA observations of SN 2002ap reported by Berger et al. ( 2002), and the early radiospheric properties of SN 2002ap are compared with similar data from two other supernovae. Finally, the GMRT radio map reveals four other X-ray sources in the field of view of M 74 with radio counterparts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present results from the first high-resolution, high signal-to-noise ratio spectrum of SN 2002ic. The resolved Ha line has a P Cygni-type profile, clearly demonstrating the presence of a dense, slow-moving (~100 km s-1) outflow. We have additionally found a huge near-infrared excess, hitherto unseen in Type Ia supernovae. We argue that this is due to an infrared light-echo arising from the pre-existing dusty circumstellar medium. We deduce a circumstellar medium mass probably exceeding 0.3 Msolar produced by a mass-loss rate greater than several times 10-4 Msolar yr-1. For the progenitor, we favour a single-degenerate system where the companion is a post-asymptotic giant branch star. As a by-product of our optical data, we are able to provide a firm identification of the host galaxy of SN 2002ic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photometric and spectroscopic properties of 26 well-observed Type Ia Supernovae (SNe Ia) were analyzed with the aim of exploring SN Ia diversity. The sample includes (Branch) normal SNe, as well as extreme events such as SN 1991T and SN 1991bg, while the truly peculiar SNe Ia, SN 2000cx and SN 2002cx, are not included in our sample. A statistical treatment reveals the existence of three different groups. The first group (FAINT) consists of faint SNe Ia similar to SN 1991bg, with low expansion velocities and rapid evolution of Si II velocity. A second group consists of normal SNe Ia, also with high temporal velocity gradient (HVG), but with brighter mean absolute magnitude =-19.3 and higher expansion velocities than the FAINT SNe. The third group includes both normal and SN 1991T-like SNe Ia: these SNe populate a narrow strip in the Si II velocity evolution plot, with a low-velocity gradient (LVG), but have absolute magnitudes similar to HVGs. While the FAINT and HVG SNe Ia together seem to define a relation between R(Si II) and ���m15(B), the LVG SNe either do not conform to that relation or define a new, looser one. The R(Si II) premaximum evolution of HVGs is strikingly different from that of LVGs. We discuss the impact of this evidence on the understanding of SN Ia diversity, in terms of explosion mechanisms, degree of ejecta mixing, and ejecta-circumstellar material interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present comprehensive photometric and spectroscopic observations of the faint transient SN 2008S discovered in the nearby galaxy NGC 6946. SN 2008S exhibited slow photometric evolution and almost no spectral variability during the first nine months, implying a long photon diffusion time and a high-density circumstellar medium. Its bolometric luminosity (similar or equal to 10(41) erg s(-1) at peak) is low with respect to most core-collapse supernovae but is comparable to the faintest Type II-P events. Our quasi-bolometric light curve extends to 300 d and shows a tail phase decay rate consistent with that of Co-56. We propose that this is evidence for an explosion and formation of Ni-56 (0.0014 +/- 0.0003 M-circle dot). Spectra of SN 2008S show intense emission lines of H alpha, [Ca II] doublet and Ca II near-infrared (NIR) triplet, all without obvious P-Cygni absorption troughs. The large mid-infrared (MIR) flux detected shortly after explosion can be explained by a light echo from pre-existing dust. The late NIR flux excess is plausibly due to a combination of warm newly formed ejecta dust together with shock-heated dust in the circumstellar environment. We reassess the progenitor object detected previously in Spitzer archive images, supplementing this discussion with a model of the MIR spectral energy distribution. This supports the idea of a dusty, optically thick shell around SN 2008S with an inner radius of nearly 90 AU and outer radius of 450 AU, and an inferred heating source of 3000 K. The luminosity of the central star is L similar or equal to 10(4.6) L-circle dot. All the nearby progenitor dust was likely evaporated in the explosion leaving only the much older dust lying further out in the circumstellar environment. The combination of our long-term multiwavelength monitoring data and the evidence from the progenitor analysis leads us to support the scenario of a weak electron-capture supernova explosion in a super-asymptotic giant branch progenitor star (of initial mass 6-8 M-circle dot) embedded within a thick circumstellar gaseous envelope. We suggest that all of main properties of the electron-capture SN phenomenon are observed in SN 2008S and future observations may allow a definitive answer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present photometric and spectroscopic observations at optical and near-infrared wavelengths of the nearby type Ic supernova 2007gr. These represent the most extensive data-set to date of any supernova of this sub-type, with frequent coverage from shortly after discovery to more than one year post-explosion. We deduce a rise time to B-band maximum of 11.5 +/- 2.7 d. We find a peak B-band magnitude of M-B = -16.8, and light curves which are remarkably similar to the so-called "hypernova" SN 2002ap. In contrast, the spectra of SNe 2007gr and 2002ap show marked differences, not least in their respective expansion velocities. We attribute these differences primarily to the density profiles of their progenitor stars at the time of explosion i.e. a more compact star for SN 2007gr compared to SN 2002ap. From the quasi-bolometric light curve of SN 2007gr, we estimate that 0.076 +/- 0.010 M-circle dot of Ni-56 was produced in the explosion. Our near-infrared (IR) spectra clearly show the onset and disappearance of the first overtone of carbon monoxide (CO) between similar to 70 to 175 d relative to B-band maximum. The detection of the CO molecule implies that ionised He was not microscopically mixed within the carbon/oxygen layers. From the optical spectra, near-IR light curves, and colour evolution, we find no evidence for dust condensation in the ejecta out to about +400 d. Given the combination of unprecedented temporal coverage, and high signal-to-noise data, we suggest that SN 2007gr could be used as a template object for supernovae of this sub-class.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the results of a 10.5-yr, volume-limited (28-Mpc) search for supernova (SN) progenitor stars. In doing so we compile all SNe discovered within this volume (132, of which 27 per cent are Type Ia) and determine the relative rates of each subtype from literature studies. The core-collapse SNe break down into 59 per cent II-P and 29 per cent Ib/c, with the remainder being IIb (5 per cent), IIn (4 per cent) and II-L (3 per cent). There have been 20 II-P SNe with high-quality optical or near-infrared pre-explosion images that allow a meaningful search for the progenitor stars. In five cases they are clearly red supergiants, one case is unconstrained, two fall on compact coeval star clusters and the other twelve have no progenitor detected. We review and update all the available data for the host galaxies and SN environments (distance, metallicity and extinction) and determine masses and upper mass estimates for these 20 progenitor stars using the STARS stellar evolutionary code and a single consistent homogeneous method. A maximum likelihood calculation suggests that the minimum stellar mass for a Type II-P to form is m(min) = 8.5(-1.5)(+1) M-circle dot and the maximum mass for II-P progenitors is m(max) = 16.5 +/- 1.5 M-circle dot, assuming a Salpeter initial mass function holds for the progenitor population (in the range Gamma = -1.35(-0.7)(+0.3)). The minimum mass is consistent with current estimates for the upper limit to white dwarf progenitor masses, but the maximum mass does not appear consistent with massive star populations in Local Group galaxies. Red supergiants in the Local Group have masses up to 25 M-circle dot and the minimum mass to produce a Wolf-Rayet star in single star evolution (between solar and LMC metallicity) is similarly 25-30 M-circle dot. The reason we have not detected any high-mass red supergiant progenitors above 17 M-circle dot is unclear, but we estimate that it is statistically significant at 2.4 sigma confidence. Two simple reasons for this could be that we have systematically underestimated the progenitor masses due to dust extinction or that stars between 17-25 M-circle dot produce other kinds of SNe which are not II-P. We discuss these possibilities and find that neither provides a satisfactory solution. We term this discrepancy the 'red supergiant problem' and speculate that these stars could have core masses high enough to form black holes and SNe which are too faint to have been detected. We compare the Ni-56 masses ejected in the SNe to the progenitor mass estimates and find that low-luminosity SNe with low Ni-56 production are most likely to arise from explosions of low-mass progenitors near the mass threshold that can produce a core-collapse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using images from the Hubble Space Telescope and the Gemini Telescope, we confirmed the disappearance of the progenitors of two type II supernovae (SNe) and evaluated the presence of other stars associated with them. We found that the progenitor of SN 2003gd, an M-supergiant star, is no longer observed at the SN location and determined its intrinsic brightness using image subtraction techniques. The progenitor of SN 1993J, a K-supergiant star, is also no longer present, but its B-supergiant binary companion is still observed. The disappearance of the progenitors confirms that these two supernovae were produced by red supergiants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent searches by unbiased, wide-field surveys have uncovered a group of extremely luminous optical transients. The initial discoveries of SN 2005ap by the Texas Supernova Search and SCP-06F6 in a deep Hubble pencil beam survey were followed by the Palomar Transient Factory confirmation of host redshifts for other similar transients. The transients share the common properties of high optical luminosities (peak magnitudes similar to -21 to -23), blue colors, and a lack of H or He spectral features. The physical mechanism that produces the luminosity is uncertain, with suggestions ranging from jet-driven explosion to pulsational pair instability. Here, we report the most detailed photometric and spectral coverage of an ultra-bright transient (SN 2010gx) detected in the Pan-STARRS 1 sky survey. In common with other transients in this family, early-time spectra show a blue continuum and prominent broad absorption lines of O II. However, about 25 days after discovery, the spectra developed type Ic supernova features, showing the characteristic broad Fe II and Si II absorption lines. Detailed, post-maximum follow-up may show that all SN 2005ap and SCP-06F6 type transients are linked to supernovae Ic. This poses problems in understanding the physics of the explosions: there is no indication from late-time photometry that the luminosity is powered by Ni-56, the broad light curves suggest very large ejected masses, and the slow spectral evolution is quite different from typical Ic timescales. The nature of the progenitor stars and the origin of the luminosity are intriguing and open questions.