977 resultados para Structural biology


Relevância:

60.00% 60.00%

Publicador:

Resumo:

An Acinetobacter baumannii global clone 1 (GC1) isolate was found to carry a novel capsule biosynthesis gene cluster, designated KL12. KL12 contains genes predicted to be involved in the synthesis of simple sugars, as well as ones for N-acetyl-l-fucosamine (l-FucpNAc) and N-acetyl-d-fucosamine (d-FucpNAc). It also contains a module of 10 genes, 6 of which are required for 5,7-di-N-acetyl-legionaminic acid synthesis. Analysis of the composition of the capsule revealed the presence of N-acetyl-d-galactosamine, l-FucpNAc and d-FucpNAc, confirming the role of fnlABC and fnr/gdr genes in the synthesis of l-FucpNAc and d-FucpNAc, respectively. A non-2-ulosonic acid, shown to be 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-altro-non-2-ulosonic acid, was also detected. This sugar has not previously been recovered from biological source, and was designated 5,7-di-N-acetyl-acinetaminic acid (Aci5Ac7Ac). Proteins encoded by novel genes, named aciABCD, were predicted to be involved in the conversion of 5,7-di-N-acetyl-legionaminic acid to Aci5Ac7Ac. A pathway for 5,7-di-N-acetyl-8-epilegionaminic acid biosynthesis was also proposed. In available A. baumannii genomes, genes for the synthesis of 5,7-di-N-acetyl-acinetaminic acid were only detected in two closely related capsule gene clusters, KL12 and KL13, which differ only in the wzy gene. KL12 and KL13 are carried by isolates belonging to clinically important clonal groups, GC1, GC2 and ST25. Genes for the synthesis of N-acyl derivatives of legionaminic acid were also found in 10 further A. baumannii capsule gene clusters, and three carried additional genes for production of 5,7-di-N-acetyl-8-epilegionaminic acid.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background The genome of a wide variety of prokaryotes contains the luxS gene homologue, which encodes for the protein S-ribosylhomocysteinelyase (LuxS). This protein is responsible for the production of the quorum sensing molecule, AI-2 and has been implicated in a variety of functions such as flagellar motility, metabolic regulation, toxin production and even in pathogenicity. A high structural similarity is present in the LuxS structures determined from a few species. In this study, we have modelled the structures from several other species and have investigated their dimer interfaces. We have attempted to correlate the interface features of LuxS with the phenotypic nature of the organisms. Results The protein structure networks (PSN) are constructed and graph theoretical analysis is performed on the structures obtained from X-ray crystallography and on the modelled ones. The interfaces, which are known to contain the active site, are characterized from the PSNs of these homodimeric proteins. The key features presented by the protein interfaces are investigated for the classification of the proteins in relation to their function. From our analysis, structural interface motifs are identified for each class in our dataset, which showed distinctly different pattern at the interface of LuxS for the probiotics and some extremophiles. Our analysis also reveals potential sites of mutation and geometric patterns at the interface that was not evident from conventional sequence alignment studies. Conclusion The structure network approach employed in this study for the analysis of dimeric interfaces in LuxS has brought out certain structural details at the side-chain interaction level, which were elusive from the conventional structure comparison methods. The results from this study provide a better understanding of the relation between the luxS gene and its functional role in the prokaryotes. This study also makes it possible to explore the potential direction towards the design of inhibitors of LuxS and thus towards a wide range of antimicrobials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Communication within and across proteins is crucial for the biological functioning of proteins. Experiments such as mutational studies on proteins provide important information on the amino acids, which are crucial for their function. However, the protein structures are complex and it is unlikely that the entire responsibility of the function rests on only a few amino acids. A large fraction of the protein is expected to participate in its function at some level or other. Thus, it is relevant to consider the protein structures as a completely connected network and then deduce the properties, which are related to the global network features. In this direction, our laboratory has been engaged in representing the protein structure as a network of non-covalent connections and we have investigated a variety of problems in structural biology, such as the identification of functional and folding clusters, determinants of quaternary association and characterization of the network properties of protein structures. We have also addressed a few important issues related to protein dynamics, such as the process of oligomerization in multimers, mechanism on protein folding, and ligand induced communications (allosteric effect). In this review we highlight some of the investigations which we have carried out in the recent past. A review on protein structure graphs was presented earlier, in which the focus was on the graphs and graph spectral properties and their implementation in the study of protein structure graphs/networks (PSN). In this article, we briefly summarize the relevant parts of the methodology and the focus is on the advancement brought out in the understanding of protein structure-function relationships through structure networks. The investigations of structural/biological problems are divided into two parts, in which the first part deals with the analysis of PSNs based on static structures obtained from x-ray crystallography. The second part highlights the changes in the network, associated with biological functions, which are deduced from the network analysis on the structures obtained from molecular dynamics simulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An important question of biological relevance is the polymorphism of the double-helical DNA structure in its free form, and the changes that it undergoes upon protein-binding. We have analysed a database of free DNA crystal structures to assess the inherent variability of the free DNA structure and have compared it with a database of protein-bound DNA crystal structures to ascertain the protein-induced variations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The hot dog fold has been found in more than sixty proteins since the first report of its existence about a decade ago. The fold appears to have a strong association with fatty acid biosynthesis, its regulation and metabolism, as the proteins with this fold are predominantly coenzyme A-binding enzymes with a variety of substrates located at their active sites. Results: We have analyzed the structural features and sequences of proteins having the hot dog fold. This study reveals that though the basic architecture of the fold is well conserved in these proteins, significant differences exist in their sequence, nature of substrate and oligomerization. Segments with certain conserved sequence motifs seem to play crucial structural and functional roles in various classes of these proteins. Conclusion: The analysis led to predictions regarding the functional classification and identification of possible catalytic residues of a number of hot dog fold-containing hypothetical proteins whose structures were determined in high throughput structural genomics projects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first glycyl radical in an enzyme was described 20 years ago and since then the family of glycyl radical enzymes (GREs) has expanded to include enzymes catalysing five chemically distinct reactions. The type enzymes of the family, anaerobic ribonucleotide reductase (RNRIII) and pyruvate formate lyase (PFL) had been studied long before it was known that they are GREs. Spectroscopic measurements on the radical and an observation that exposure to oxygen irreversibly inactivates the enzymes by cleavage of the protein proved that the radical is located on a particular glycine residue, close to the C-terminus of the protein. Both anaerobic RNRIII and PFL, are important for many anaerobic and facultative anaerobic bacteria as RNRIII is responsible for the synthesis of DNA precursors and PFL catalyses a key metabolic reaction in glycolysis. The crystal structures of both were solved in 1999 and they revealed that, although the enzymes do not share significant sequence identity, they share a similar structure - the radical site and residues necessary for catalysis are buried inside a ten stranded $\ualpha $/$\ubeta $-barrel. GREs are synthesised in an inactive form and are post-translationally activated by an activating enzyme which uses S-adenosyl methionine and an iron-sulphur cluster to generate the radical. One of the goals of this thesis work was to crystallise the activating enzyme of PFL. This task is challenging as, like GREs, the activating component is inactivated by oxygen. The experiments were therefore carried out in an oxygen free atmosphere. This is the first report of a crystalline GRE activating enzyme. Recently several new GREs have been characterised, all sharing sequence similarity to PFL but not to RNRIII. Also, the genome sequencing projects have identified many PFL-like GREs of unknown function, usually annotated as PFLs. In the present thesis I describe the grouping of these PFL family enzymes based on the sequence similarity and analyse the conservation patterns when compared to the structure of E. coli PFL. Based on this information an activation route is proposed. I also report a crystal structure of one of the PFL-like enzymes with unknown function, PFL2 from Archaeoglobus fulgidus. As A. fulgidus is a hyperthermophilic organism, possible mechanisms stabilising the structure are discussed. The organisation of an active site of PFL2 suggests that the enzyme may be a dehydratase. Keywords: glycyl radical, enzyme, pyruvate formate lyase, x-ray crystallography, bioinformatics

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glycosaminoglycans (GAGs) are important complex carbohydrates that participate in many biological processes through the regulation of their various protein partners. Biochemical, structural biology and molecular modelling approaches have assisted in understanding the molecular basis of such interactions, creating an opportunity to capitalize on the large structural diversity of GAGs in the discovery of new drugs. The complexity of GAG–protein interactions is in part due to the conformational flexibility and underlying sulphation patterns of GAGs, the role of metal ions and the effect of pH on the affinity of binding. Current understanding of the structure of GAGs and their interactions with proteins is here reviewed: the basic structures and functions of GAGs and their proteoglycans, their clinical significance, the three-dimensional features of GAGs, their interactions with proteins and the molecular modelling of heparin binding sites and GAG–protein interactions. This review focuses on some key aspects of GAG structure–function relationships using classical examples that illustrate the specificity of GAG–protein interactions, such as growth factors, anti-thrombin, cytokines and cell adhesion molecules. New approaches to the development of GAG mimetics as possible new glycotherapeutics are also briefly covered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrophobins are small surface active proteins that are produced by filamentous fungi. The surface activity of hydrophobin proteins leads to the formation of a film at the air-water interface and adsorption to surfaces. The formation of these hydrophobin films and coatings is important in many stages of fungal development. Furthermore, these properties make hydrophobins interesting for potential use in technical applications. The surfactant-like properties of hydrophobins from Trichoderma reesei were studied at the air-water interface, at solid surfaces, and in solution. The hydrophobin HFBI was observed to spontaneously form a cohesive film on a water drop. The film was imaged using atomic force microscopy from both sides, revealing a monomolecular film with a defined molecular structure. The use of hydrophobins as surface immobilization carriers for enzymes was studied using fusion proteins of HFBI or HFBII and an enzyme. Furthermore, sitespecifically modified variants of HFBI were shown to retain their ability to selfassemble at interfaces and to be able to bind a second layer of proteins by biomolecular recognition. In order to understand the function of hydrophobins at interfaces, an understanding of their overall behavior and self-assembly is needed. HFBI and HFBII were shown to associate in solution into dimers and tetramers in a concentration-dependent manner. The association dynamics and protein-protein interactions of HFBI and HFBII were studied using Förster resonance energy transfer and size exclusion chromatography. It was shown that the surface activity of HFBI is not directly dependent on the formation of multimers in solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MIPS (metal interactions in protein structures) is a database of metals in the three-dimensional acromolecular structures available in the Protein Data Bank. Bound metal ions in proteins have both catalytic and structural functions. The proposed database serves as an open resource for the analysis and visualization of all metals and their interactions with macromolecular (protein and nucleic acid) structures. MIPS can be searched via a user-friendly interface, and the interactions between metals and protein molecules, and the geometric parameters, can be viewed in both textual and graphical format using the freely available graphics plug-in Jmol. MIPS is updated regularly, by means of programmed scripts to find metal-containing proteins from newly released protein structures. The database is useful for studying the properties of coordination between metals and protein molecules. It also helps to improve understanding of the relationship between macromolecular structure and function. This database is intended to serve the scientific community working in the areas of chemical and structural biology, and is freely available to all users, around the clock, at http://dicsoft2.physics.iisc.ernet.in/mips/.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MLDB (macromolecule ligand database) is a knowledge base containing ligands co-crystallized with the three-dimensional structures available in the Protein Data Bank. The proposed knowledge base serves as an open resource for the analysis and visualization of all ligands and their interactions with macromolecular structures. MLDB can be used to search ligands, and their interactions can be visualized both in text and graphical formats. MLDB will be updated at regular intervals (weekly) with automated Perl scripts. The knowledge base is intended to serve the scientific community working in the areas of molecular and structural biology. It is available free to users around the clock and can be accessed at http://dicsoft2.physics.iisc.ernet.in/mldb/.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ability to test large arrays of cell and biomaterial combinations in 3D environments is still rather limited in the context of tissue engineering and regenerative medicine. This limitation can be generally addressed by employing highly automated and reproducible methodologies. This study reports on the development of a highly versatile and upscalable method based on additive manufacturing for the fabrication of arrays of scaffolds, which are enclosed into individualized perfusion chambers. Devices containing eight scaffolds and their corresponding bioreactor chambers are simultaneously fabricated utilizing a dual extrusion additive manufacturing system. To demonstrate the versatility of the concept, the scaffolds, while enclosed into the device, are subsequently surface-coated with a biomimetic calcium phosphate layer by perfusion with simulated body fluid solution. 96 scaffolds are simultaneously seeded and cultured with human osteoblasts under highly controlled bidirectional perfusion dynamic conditions over 4 weeks. Both coated and noncoated resulting scaffolds show homogeneous cell distribution and high cell viability throughout the 4 weeks culture period and CaP-coated scaffolds result in a significantly increased cell number. The methodology developed in this work exemplifies the applicability of additive manufacturing as a tool for further automation of studies in the field of tissue engineering and regenerative medicine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Surface models of biomolecules have become crucially important for the study and understanding of interaction between biomolecules and their environment. We argue for the need for a detailed understanding of biomolecular surfaces by describing several applications in computational and structural biology. We review methods used to model, represent, characterize, and visualize biomolecular surfaces focusing on the role that geometry and topology play in identifying features on the surface. These methods enable the development of efficient computational and visualization tools for studying the function of biomolecules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Malaria caused by the parasite Plasmodium falciparum is a major public health concern. The parasite lacks a functional tricarboxylic acid cycle, making glycolysis its sole energy source. Although parasite enzymes have been considered as potential antimalarial drug targets, little is known about their structural biology. Here we report the crystal structure of triosephosphate isomerase (TIM) from P. falciparum at 2.2 Angstrom resolution. Results: The crystal structure of P. falciparum TIM (PfTIM), expressed in Escherichia coli, was determined by the molecular replacement method using the structure of trypanosomal TIM as the starting model. Comparison of the PfTIM structure with other TIM structures, particularly human TIM, revealed several differences, In most TIMs the residue at position 183 is a glutamate but in PtTIM it is a leucine, This leucine residue is completely exposed and together with the surrounding positively charged patch, may be responsible for binding TIM to the erythrocyte membrane. Another interesting feature is the occurrence of a cysteine residue at the dimer interface of PfTIM (Cys13), in contrast to human TIM where this residue is a methionine. Finally, residue 96 of human TIM (Ser96), which occurs near the active site, has been replaced by phenylalanine in PfTIM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The galactose-specific lectin from the seeds of Dolichos lablab has been crystallized using the hanging-drop vapour-diffusion technique. The crystals belong to space group P1, with unit-cell parameters a = 73.99, b = 84.13, c = 93.15 angstrom, alpha = 89.92, beta = 76.01, gamma = 76.99 degrees. X-ray diffraction data to a resolution of 3.0 angstrom have been collected under cryoconditions ( 100 K) using a MAR imaging-plate detector system mounted on a rotating-anode X-ray generator. Molecular-replacement calculations carried out using the available structures of legume lectins as search models revealed that the galactose-specific lectin from D. lablab forms a tetramer similar to soybean agglutinin; two such tetramers are present in the asymmetric unit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: One of the major challenges in understanding enzyme catalysis is to identify the different conformations and their populations at detailed molecular level in response to ligand binding/environment. A detail description of the ligand induced conformational changes provides meaningful insights into the mechanism of action of enzymes and thus its function. Results: In this study, we have explored the ligand induced conformational changes in H. pylori LuxS and the associated mechanistic features. LuxS, a dimeric protein, produces the precursor (4,5-dihydroxy-2,3-pentanedione) for autoinducer-2 production which is a signalling molecule for bacterial quorum sensing. We have performed molecular dynamics simulations on H. pylori LuxS in its various ligand bound forms and analyzed the simulation trajectories using various techniques including the structure network analysis, free energy evaluation and water dynamics at the active site. The results bring out the mechanistic details such as co operativity and asymmetry between the two subunits, subtle changes in the conformation as a response to the binding of active and inactive forms of ligands and the population distribution of different conformations in equilibrium. These investigations have enabled us to probe the free energy landscape and identify the corresponding conformations in terms of network parameters. In addition, we have also elucidated the variations in the dynamics of water co-ordination to the Zn2+ ion in LuxS and its relation to the rigidity at the active sites. Conclusions: In this article, we provide details of a novel method for the identification of conformational changes in the different ligand bound states of the protein, evaluation of ligand-induced free energy changes and the biological relevance of our results in the context of LuxS structure-function. The methodology outlined here is highly generalized to illuminate the linkage between structure and function in any protein of known structure.