966 resultados para Strain-Gradient Plasticity
Resumo:
The stress-strain relations of nanocrystalline twin copper with variously sized grains and twins are studied by using FEM simulations based on the conventional theory of mechanism-based strain gradient plasticity (CMSG). A model of twin lamellae strengthening zone is proposed and a cohesive interface model is used to simulate grain-boundary sliding and separation. Effects of material parameters on stress-strain curves of polycrystalline twin copper are studied in detail. Furthermore, the effects of both twin lamellar spacing and twin lamellar distribution on the stress-strain relations are investigated under tension loading. The numerical simulations show that both the strain gradient effect and the material hardening increase with decreasing the grain size and twin lamellar spacing. The distribution of twin lamellae has a significant influence on the overall mechanical properties, and the effect is reduced as both the grain size and twin lamellar spacing decrease. Finally, the FEM prediction results are compared with the experimental data.
Resumo:
Peel test measurements have been performed to estimate both the interface toughness and the separation strength between copper thin film and Al2O3 substrate with film thicknesses ranging between 1 and 15 mu m. An inverse analysis based on the artificial neural network method is adopted to determine the interface parameters. The interface parameters are characterized by the cohesive zone (CZ) model. The results of finite element simulations based on the strain gradient plasticity theory are used to train the artificial neural network. Using both the trained neural network and the experimental measurements for one test result, both the interface toughness and the separation strength are determined. Finally, the finite element predictions adopting the determined interface parameters are performed for the other film thickness cases, and are in agreement with the experimental results.
Resumo:
The mechanical properties of film-substrate systems have been investigated through nano-indentation experiments in our former paper (Chen, S.H., Liu, L., Wang, T.C., 2005. Investigation of the mechanical properties of thin films by nano-indentation, considering the effects of thickness and different coating-substrate combinations. Surf. Coat. Technol., 191, 25-32), in which Al-Glass with three different film thicknesses are adopted and it is found that the relation between the hardness H and normalized indentation depth h/t, where t denotes the film thickness, exhibits three different regimes: (i) the hardness decreases obviously with increasing indentation depth; (ii) then, the hardness keeps an almost constant value in the range of 0.1-0.7 of the normalized indentation depth h/t; (iii) after that, the hardness increases with increasing indentation depth. In this paper, the indentation image is further investigated and finite element method is used to analyze the nano-indentation phenomena with both classical plasticity and strain gradient plasticity theories. Not only the case with an ideal sharp indenter tip but also that with a round one is considered in both theories. Finally, we find that the classical plasticity theory can not predict the experimental results, even considering the indenter tip curvature. However, the strain gradient plasticity theory can describe the experimental data very well not only at a shallow indentation depth but also at a deep depth. Strain gradient and substrate effects are proved to coexist in film-substrate nano-indentation experiments. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Models describing wet adhesion between indenters and substrates joined by liquid bridges are investigated. The influences of indenter shapes and various parameters of structures on capillary force are focused. In the former, we consider several shapes, such as conical, spherical and truncated conical indenter with a spherical end. In the latter, the effects of the contact angle, the environmental humidity, the gap between the indenter and the substrate, etc. are included. Different dependences of the capillary force on the indenter shapes and the geometric parameters are observed. Most interesting finding is that applying the present results to micro- and nano-indentation experiments shows the size effect in indentation hardness not produced but underestimated by the effects of capillary force.(4 refs)
Resumo:
The mechanical behaviors of the ceramic particle-reinforced metal matrix composites are modeled based on the conventional theory of mechanism-based strain gradient plasticity presented by Huang et al. Two cases of interface features with and without the effects of interface cracking will be analyzed, respectively. Through comparing the result based on the interface cracking model with experimental result, the effectiveness of the present model can be evaluated. Simultaneously, the length parameters included in the strain gradient plasticity theory can be obtained.
Resumo:
This work is concerned with the derivation of optimal scaling laws, in the sense of matching lower and upper bounds on the energy, for a solid undergoing ductile fracture. The specific problem considered concerns a material sample in the form of an infinite slab of finite thickness subjected to prescribed opening displacements on its two surfaces. The solid is assumed to obey deformation-theory of plasticity and, in order to further simplify the analysis, we assume isotropic rigid-plastic deformations with zero plastic spin. When hardening exponents are given values consistent with observation, the energy is found to exhibit sublinear growth. We regularize the energy through the addition of nonlocal energy terms of the strain-gradient plasticity type. This nonlocal regularization has the effect of introducing an intrinsic length scale into the energy. We also put forth a physical argument that identifies the intrinsic length and suggests a linear growth of the nonlocal energy. Under these assumptions, ductile fracture emerges as the net result of two competing effects: whereas the sublinear growth of the local energy promotes localization of deformation to failure planes, the nonlocal regularization stabilizes this process, thus resulting in an orderly progression towards failure and a well-defined specific fracture energy. The optimal scaling laws derived here show that ductile fracture results from localization of deformations to void sheets, and that it requires a well-defined energy per unit fracture area. In particular, fractal modes of fracture are ruled out under the assumptions of the analysis. The optimal scaling laws additionally show that ductile fracture is cohesive in nature, i.e., it obeys a well-defined relation between tractions and opening displacements. Finally, the scaling laws supply a link between micromechanical properties and macroscopic fracture properties. In particular, they reveal the relative roles that surface energy and microplasticity play as contributors to the specific fracture energy of the material. Next, we present an experimental assessment of the optimal scaling laws. We show that when the specific fracture energy is renormalized in a manner suggested by the optimal scaling laws, the data falls within the bounds predicted by the analysis and, moreover, they ostensibly collapse---with allowances made for experimental scatter---on a master curve dependent on the hardening exponent, but otherwise material independent.
Resumo:
The size effect in conical indentation of an elasto-plastic solid is predicted via the Fleck and Willis formulation of strain gradient plasticity (Fleck, N.A. and Willis, J.R., 2009, A mathematical basis for strain gradient plasticity theory. Part II: tensorial plastic multiplier, J. Mech. Phys. Solids, 57, 1045-1057). The rate-dependent formulation is implemented numerically and the full-field indentation problem is analyzed via finite element calculations, for both ideally plastic behavior and dissipative hardening. The isotropic strain-gradient theory involves three material length scales, and the relative significance of these length scales upon the degree of size effect is assessed. Indentation maps are generated to summarize the sensitivity of indentation hardness to indent size, indenter geometry and material properties (such as yield strain and strain hardening index). The finite element model is also used to evaluate the pertinence of the Johnson cavity expansion model and of the Nix-Gao model, which have been extensively used to predict size effects in indentation hardness. © 2012 Elsevier Ltd.
Resumo:
A new stabilization scheme, based on a stochastic representation of the discretized field variables, is proposed with a view to reduce or even eliminate unphysical oscillations in the mesh-free numerical simulations of systems developing shocks or exhibiting localized bands of extreme deformation in the response. The origin of the stabilization scheme may be traced to nonlinear stochastic filtering and, consistent with a class of such filters, gain-based additive correction terms are applied to the simulated solution of the system, herein achieved through the element-free Galerkin method, in order to impose a set of constraints that help arresting the spurious oscillations. The method is numerically illustrated through its Applications to inviscid Burgers' equations, wherein shocks may develop as a result of intersections of the characteristics, and to a gradient plasticity model whose response is often characterized by a developing shear band as the external load is gradually increased. The potential of the method in stabilized yet accurate numerical simulations of such systems involving extreme gradient variations in the response is thus brought forth. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, a new phenomenological theory with strain gradient effects is proposed to account for the size dependence of plastic deformation at micro- and submicro-length scales. The theory fits within the framework of general couple stress theory and three rotational degrees of freedom omega(i) are introduced in addition to the conventional three translational degrees of freedom mu(i). omega(i) is called micro-rotation and is the sum of material rotation plus the particles' relative rotation. While the new theory is used to analyze the crack tip field or the indentation problems, the stretch gradient is considered through a new hardening law. The key features of the theory are that the rotation gradient influences the material character through the interaction between the Cauchy stresses and the couple stresses; the term of stretch gradient is represented as an internal variable to increase the tangent modulus. In fact the present new strain gradient theory is the combination of the strain gradient theory proposed by Chen and Wang (Int. J. Plast., in press) and the hardening law given by Chen and Wang (Acta Mater. 48 (2000a) 3997). In this paper we focus on the finite element method to investigate material fracture for an elastic-power law hardening solid. With remotely imposed classical K fields, the full field solutions are obtained numerically. It is found that the size of the strain gradient dominance zone is characterized by the intrinsic material length l(1). Outside the strain gradient dominance zone, the computed stress field tends to be a classical plasticity field and then K field. The singularity of stresses ahead of the crack tip is higher than that of the classical field and tends to the square root singularity, which has important consequences for crack growth in materials by decohesion at the atomic scale. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We aim at understanding the multislip behaviour of metals subject to irreversible deformations at small-scales. By focusing on the simple shear of a constrained single-crystal strip, we show that discrete Dislocation Dynamics (DD) simulations predict a strong latent hardening size effect, with smaller being stronger in the range [1.5 µm, 6 µm] for the strip height. We attempt to represent the DD pseudo-experimental results by developing a flow theory of Strain Gradient Crystal Plasticity (SGCP), involving both energetic and dissipative higher-order terms and, as a main novelty, a strain gradient extension of the conventional latent hardening. In order to discuss the capability of the SGCP theory proposed, we implement it into a Finite Element (FE) code and set its material parameters on the basis of the DD results. The SGCP FE code is specifically developed for the boundary value problem under study so that we can implement a fully implicit (Backward Euler) consistent algorithm. Special emphasis is placed on the discussion of the role of the material length scales involved in the SGCP model, from both the mechanical and numerical points of view.
Resumo:
We aim at understanding the multislip behaviour of metals subject to irreversible deformations at small-scales. By focusing on the simple shear of a constrained single-crystal strip, we show that discrete Dislocation Dynamics (DD) simulations predict a strong latent hardening size effect, with smaller being stronger in the range [1.5 µm, 6 µm] for the strip height. We attempt to represent the DD pseudo-experimental results by developing a flow theory of Strain Gradient Crystal Plasticity (SGCP), involving both energetic and dissipative higher-order terms and, as a main novelty, a strain gradient extension of the conventional latent hardening. In order to discuss the capability of the SGCP theory proposed, we implement it into a Finite Element (FE) code and set its material parameters on the basis of the DD results. The SGCP FE code is specifically developed for the boundary value problem under study so that we can implement a fully implicit (Backward Euler) consistent algorithm. Special emphasis is placed on the discussion of the role of the material length scales involved in the SGCP model, from both the mechanical and numerical points of view.
Resumo:
A novel approach for simultaneous measurement of strain and temperature with a single tapered fiber Bragg grating is proposed. This method is based on the fact that the reflectivity at central wavelength of FBG reflection changes with chirp (strain gradient). A diode laser is locked to the central wavelength of FBG reflection. Central wavelength of the FBG shifts with temperature. Change in reflectivity & wavelength of the diode laser were used to measure strain and temperature on the FBG respectively.
Resumo:
Nanoindentation experiments on Al/glass systems show that, as the indentation depth increases, the hardness decreases during a shallow indentation, and increases when the indenter tip approaches the film–substrate interface. We associate the rise in hardness during two stages with the strong strain gradient effects, the first stage is related with the small scale effects and the second stage with the strain gradient between the indenter and the hard substrate. Using the strain gradient theory proposed by Chen and Wang and the classical plasticity theory, the observed nanoindentation behavior is modeled and analyzed by means of the finite element method, and it is found that the classical plasticity cannot explain the experiment results but the strain gradient theory can describe the experiment data at both shallow and deep indentation depths very well. The results prove that both the strain gradient effects and substrate effects exist in the nanoindentation of the film–substrate system.
Resumo:
Two stages have been observed in micro-indentation experiment of a soft film on a hard substrate. In the first stage, the hardness of the thin film decreases with increasing depth of indentation when indentation is shallow; and in the second stage, the hardness of the film increases with increasing depth of indentation when the indenter tip approaches the hard substrate. In this paper, the new strain gradient theory is used to analyze the micro-indentation behavior of a soft film on a hard substrate. Meanwhile, the classic plastic theory is also applied to investigating the problem. Comparing two theoretical results with the experiment data, one can find that the strain gradient theory can describe the experiment data at both the shallow and deep indentation depths quite well, while the classic theory can't explain the experiment results.
Resumo:
Two topics in plane strain perfect plasticity are studied using the method of characteristics. The first is the steady-state indentation of an infinite medium by either a rigid wedge having a triangular cross section or a smooth plate inclined to the direction of motion. Solutions are exact and results include deformation patterns and forces of resistance; the latter are also applicable for the case of incipient failure. Experiments on sharp wedges in clay, where forces and deformations are recorded, showed a good agreement with the mechanism of cutting assumed by the theory; on the other hand the indentation process for blunt wedges transforms into that of compression with a rigid part of clay moving with the wedge. Finite element solutions, for a bilinear material model, were obtained to establish a correspondence between the response of the plane strain wedge and its axi-symmetric counterpart, the cone. Results of the study afford a better understanding of the process of indentation of soils by penetrometers and piles as well as the mechanism of failure of deep foundations (piles and anchor plates).
The second topic concerns the plane strain steady-state free rolling of a rigid roller on clays. The problem is solved approximately for small loads by getting the exact solution of two problems that encompass the one of interest; the first is a steady-state with a geometry that approximates the one of the roller and the second is an instantaneous solution of the rolling process but is not a steady-state. Deformations and rolling resistance are derived. When compared with existing empirical formulae the latter was found to agree closely.