912 resultados para Spore germination
Resumo:
A laboratory experiment compared germination of the invasive exotic grass Hymenachne amplexicaulis (Rudge) Nees and the native H. acutigluma (Steud.) Gilliland. Seeds of both species were exposed to combinations of light (constant dark, alternating dark/light or constant light), temperature (constant or alternating) and nitrate regimes (with or without the addition of KNO3). Three seed lots of H. amplexicaulis (fresh, two adn four months old) and one of H. acutigluma (fresh seed) were tested. A significant temperature x light x nitrate x seed lot interaction occured. At a constant temperature very few seeds of either H. amplexicaulis or H. acutigluma germinated, regardless of the light regime or addition of KNO3. Generally, maximum germination occurred under a combination of alternating temperature, the presence of light (either constant or alternating) and the addition of KNO3. The exception was four month stored H. amplexicaulis seed, which reached maximum germinaction without the need for KNO3. Fresh seed of both H. amplexicaulis and H. acutigluma exhibited similar germination requirements. These findings suggest that conditions that buffer seeds from light and/or temperature fluctuations could reduce germination and possibly extend the life of seed banks of both H. amplexicaulis and H. acutigluma. Conversely, for land managers trying to control the exotic H. amplexicaulis, activities that create more favourable conditions for germination may help deplete seed banks faster.
Resumo:
This paper reports a field study undertaken to determine if the foliar application of herbicides fluroxypyr (150 mL 100 L-1 a.i.) and metsulfuron-methyl (12 g 100 L-1 a.i.) were capable of reducing the germination and viability of Chromolaena odorata (L.) R.M.King & H.Rob. (Siam weed) seeds at three different stages of maturity. After foliar application of fluroxypyr germination of mature seeds was reduced by 88% and intermediate and immature seeds were reduced by 100%, compared to the control. Fluroxypyr also reduced the viability of mature, intermediate and immature seeds by 79, 89 and 67% respectively, compared to the control. Metsulfuron-methyl reduced germination of intermediate and immature seeds by 53 and 99% respectively compared to the control. Viability was also reduced by 74 and 96% respectively, compared to the control. Mature seeds were not affected by metsulfuron-methyl as germination and viability increased by 2% and 1% respectively, as compared to the control. These results show that these herbicides are capable of reducing the amount of viable seed entering the seed bank. However depending on the treatment and stage of seed development a percentage of seeds on the plants will remain viable and contribute to the seed bank. This information is of value to Siam weed eradication teams as plants are most easily located and subsequently treated at the time of flowering. Knowledge of the impact of control methods on seeds at various stages of development will help determine the most suitable chemical control option for a given situation.
Resumo:
Cinnamate is the product of phenylalanine ammonialyase (PAL). This compound, a precursor of phenolics in plants, has been shown to be phytotoxic. Cinnamate inhibits PAL activity in cucumber seedlings. DL-phenylalanine has the same effect on the enzyme but does not affect growth. Actinomycin D and cycloheximide are phytotoxic and inhibit PAL. Production of a double-peg has been noticed in the seedlings, grown in the presence of actinomycin D. Light stimulates PAL activity in the seedling.
Resumo:
Sonchus oleraceus (common sowthistle) is a dominant weed and has increased in prevalence in conservation cropping systems of the subtropical grain region of Australia. Four experiments were undertaken to define the environmental factors that favor its germination, emergence, and seed persistence. Seeds were germinated at constant temperatures between 5 and 35C and water potentials between 0 and -1.4 MPa. The maximum germination rate of 86-100% occurred at 0 and -0.2 MPa, irrespective of the temperature when exposed to light (12 h photoperiod light/dark), but the germination rate was reduced by 72% without light. At water potentials of -0.6 to -0.8 MPa, the germination rate was reduced substantially by higher temperatures; no seed germinated at a water potential >-1.0 MPa. Emergence and seed persistence were measured over 30 months following seed burial at 0 (surface), 1, 2, 5, and 10 cm depths in large pots that were buried in a south-eastern Queensland field. Seedlings emerged readily from the surface and 1 cm depth, with no emergence from below the 2 cm depth. The seedlings emerged during any season following rain but, predominantly, within 6 months of planting. Seed persistence was short-term on the soil surface, with 2% of seeds remaining after 6 months, but it increased with the burial depth, with 12% remaining after 30 months at 10 cm. Thus, a minimal seed burial depth with reduced tillage and increased surface soil water with stubble retention has favored the proliferation of this weed in any season in a subtropical environment. However, diligent management without seed replenishment will greatly reduce this weed problem within a short period.
Resumo:
High concentration of L-cystine (0.25%) when present in a glucose-mineral salt medium inhibited sporulation-specific events like protease production, calcium uptake and dipicolinic acid synthesis inBacillus thuringiensis var.thuringiensis. In addition, the enzymes of the Krebs cycle from aconitase onwards were completely inhibited by a high concentration of cystine. At a low concentration of cystine (0.05%), none of the above mentioned macromolecular changes were affected. Lipid synthesis monitored by [1,214 C]-acetate incorporation into lipid as well as into whole cells was completely inhibited.
Resumo:
The effect of the addition of different concentratons of cystine and cysteine on sporulation and parasporal crystal formation in Bacillus thuringiensis var. thuringiensis was studied. The effect was well pronounced when the systine/cysteine additions were made after the stationary phase. Heat stable spores and crystals were formed when the culture was provided with a low concentration of cystine/cysteine (0.05 per cent w/v). At a moderate concentration of cystine or cysteine (0.15%), only heat labile spores were formed without the production of the crystal. When the cystine/cysteine concentration was high (0.25%), spore and crystal formation were completely inhibited. Partial reversal of inhibition of sporulation was brought about by sodium sulphate or zinc sulphate and lead, copper, cadmium or cobalt acetate at 0.2 mM or at 0.2% of sodium or potassium pyruvate, citrate, isaconitate, oxalosuccinate, ∝ -keto-glutarate, succinate, fumarate, malate, or oxalacetate. Glutamate (0.2%) overcame the inhibitory effect of cystine/cysteine completely. The structural changes observed using phase contrast microscopy were dependent upon the concentration of cystine/cysteine.
Resumo:
Breeding by several of the spore-feeding species in the genus Phaulothrips is shown to be associated with abandoned tunnels of bees and scolytid beetles, as well as with the dead seed capsules of Eucalyptus species. The breeding sites for other species in the genus remain unknown, but 16 species are here recognised from Australia, of which the following six are newly described: P. daguilaris, P. flindersi, P. kingae, P. kranzae, P. oakeyi, P. whyallae. Copyright © 2013 Magnolia Press.
Resumo:
Despite of improving levels of hygiene, the incidence of registered food borne disease has been at the same level for many years: there were 40 to 90 epidemics in which 1000-9000 persons contracted food poisoning through food or drinking water in Finland. Until the year 2004 salmonella and campylobacter were the most common bacterial causes of food borne diseases, but in years 2005-2006 Bacillus cereus was the most common. Similar developement has been published i.e. in Germany already in the 1990´s. One reason for this can be Bacillus cereus and its emetic toxin, cereulide. Bacillus cereus is a common environmental bacterium that contaminates raw materials of food. Otherwise than salmonella and campylobacter, Bacillus cereus is a heat resistant bacterium, capable of surviving most cooking procedures due to the production of highly thermo resistant spores. The food involved has usually been heat treated and surviving spores are the source of the food poisoning. The heat treatment induces germination of the spore and the vegetative cells then produce toxins. This doctoral thesis research focuses on developing methods for assessing and eliminating risks to food safety by cereulide producing Bacillus cereus. The biochemistry and physiology of cereulide production was investigated and the results were targeted to offer tools for minimizing toxin risk in food during the production. I developed methods for the extraction and quantitative analysis of cereulide directly from food. A prerequisite for that is knowledge of the chemical and physical properties of the toxin. Because cereulide is practically insoluble in water, I used organic solvents; methanol, ethanol and pentane for the extraction. For extraction of bakery products I used high temperature (100C) and pressure (103.4 bars). Alternaties for effective extraction is to flood the plain food with ethanol, followed by stationary equilibration at room temperature. I used this protocol for extracting cereulide from potato puree and penne. Using this extraction method it is also possible also extract cereulide from liquid food, like milk. These extraction methods are important improvement steps for studying of Bacillus cereus emetic food poisonings. Prior my work, cereulide extraction was done using water. As the result, the yield was poor and variable. To investigate suspected food poisonings, it is important to show actual toxicity of the incriminated food. Many toxins, but not cereulide, inactivate during food processing like heating. The next step is to identify toxin by chemical methods. I developed with my colleague Maria Andesson a rapid assay for the detection of cereulide toxicity, within 5 to 15 minutes. By applying this test it is possible to rapidly detect which food was causing the food poisoning. The chemical identification of cereulide was achieved using mass spectrometry. I used cereulide specific molecular ions, m/z (+/-0.3) 1153.8 (M+H+), 1171.0 (M+NH4+), 1176.0 (M+Na+) and 1191.7 (M+K+) for reliable identification. I investigated foods to find out their amenability to accumulate cereulide. Cereulide was formed high amounts (0.3 to 5.5 microg/g wet wt) when of cereulide producing B. cereus strains were present in beans, rice, rice-pastry and meat-pastry, if stored at non refrigerated temperatures (21-23C). Rice and meat pastries are frequently consumed under conditions where no cooled storage is available e.g. picnics and outdoor events. Bacillus cereus is a ubiquitous spore former and is therefore difficult to eliminate from foods. It is therefore important to know which conditions will affect the formation of cereulide in foods. My research showed that the cereulide content was strongly (10 to 1000 fold differences in toxin content) affected by the growth environment of the bacterium. Storage of foods under nitrogen atmosphere (> 99.5 %) prevented the production of cereulide. But when also carbon dioxide was present, minimizing the oxygen contant (< 1%) did not protect the food from formation of cereulide in preliminary experiments. Also food supplements affected cereulide production at least in the laboratory. Adding free amino acids, leucine and valine, stimulated cereulide production 10 to 20 fold. In peptide bonded form these amino acids are natural constituents in all proteins. Interestingly, adding peptide bonded leucine and valine had no significant effect on cereulide production. Free amino acids leucine and valine are approved food supplements and widely used as flawour modifiers in food technology. My research showed that these food supplements may increase food poisoning risk even though they are not toxic themselves.
Resumo:
Take home messages: Plant only high quality seed that has been germ and vigour tested and treated with a registered seed dressing Avoid poorly drained paddocks and those with a history of lucerne, medics or chickpea Phytophthora root rot, PRR; do not grow Boundary if you even suspect a PRR risk Select best variety suited to soil type, farming system and disease risk Beware Ascochyta: follow recommendations for your variety and district Minimise risk of virus by retaining stubble, planting on time and at optimal rate, controlling weeds and ensuring adequate plant nutrition Test soil to determine risk of salinity and sodicity – do not plant chickpeas if ECe > 1.0-1.3 dS/m. Beware early desiccation of seed crops – know how to tell when 90-95% seeds are mature
Resumo:
Chinee apple (Ziziphus mauritiana Lam.) is a thorny tree that is invading tropical woodlands of northern Australia. The present study reports three experiments related to the seed dynamics of chinee apple. Experiment 1 and 2 investigated persistence of seed lots under different soil types (clay and river loam), levels of pasture cover (present or absent) and burial depths (0, 2.5, 10 and 20 cm). Experiment 3 determined the germination response of chinee apple seeds to a range of alternating day/night temperatures (11/6°C up to 52/40°C). In the longevity experiments (Expts 1 and 2), burial depth, soil type and burial duration significantly affected viability. Burial depth had the greatest influence, with surface located seeds generally persisting for longer than those buried below ground. Even so, no viable seeds remained after 18 and 24 months in the first and second experiment, respectively. In Expt 3 seeds of chinee apple germinated under a wide range of alternating day/night temperatures ranging from 16/12°C to 47 /36°C. Optimal germination (77%) occurred at 33/27°C and no seeds germinated at either of the lowest (11/6°C) or highest (52/40°C) temperature regimes tested. These findings indicated that chinee apple has the potential to expand its current distribution to cooler areas of Australia. Control practices need to be undertaken for at least two years to exhaust the seed bank.
Resumo:
Cat’s claw creeper vine, Dolichandra unguis-cati (L.) Lohmann (syn. Macfadyena unguis-cati (L.) Gentry), is a major environmental weed in Australia. Two forms of the weed with distinctive leaf morphology and reproductive traits, including varying fruit size, occur in Queensland, Australia. The long pod form occurs in a few localities in Queensland, while the short pod form is widely distributed in Queensland and northern part of New South Wales. This investigation aimed to evaluate germination behavior and occurrence of polyembryony (production of multiple seedlings from a single seed) in the two forms of the weed. Seeds were germinated in growth chambers set to 10/20°C, 15/25°C, 20/30°C, 30/45°C and 25°C, representing ambient temperature conditions of the region. Germination and polyembryony were monitored over a period of 12 weeks. For all the treatments in this study, seeds from short pod plants exhibited significantly higher germination rates and higher occurrence of polyembryony than those from long pod plants. Seeds from long pod plants did not germinate at the lowest temperature of 10/20°C; in contrast, those of the short pod form germinated under this condition, albeit at a lower rate (reaching a maximum 45% germination at week 12). Results from this study could explain why the short pod form of D. unguis-cati is the more widely distributed plants in Australia, while the long pod is confined to a few localities. The results have implication in predicting future range of both forms of the invasive D. unguis-cati, as well as inform management decisions for control of the weed.
Resumo:
GERMINATION transfers a metabolically inert embryo into an active state of growth and development. The presence of conserved mRNAs has been demonstrated in different species of eggs and seeds1–4. In rice embryos, germination was shown to be independent of the synthesis of RNA up to 18–24 h after the start of imbibition5, although RNA synthesis was detected as early as 9 h after the start of imbibition. In this report, the sequence of the transcriptional events taking place during the early phase of the germination of rice embryos are presented.
Resumo:
Cat’s claw creeper, Dolichandra unguis-cati (L.) Lohmann (syn. Macfadyena unguis-cati (L.) Gentry) is a major environmental weed in Australia. Two forms (‘long’ and ‘short’ pod) of the weed occur in Australia. This investigation aimed to evaluate and compare germination behavior and occurrence of polyembryony in the two forms of the weed. Seeds were germinated in growth chambers set to 10/20 °C, 15/25 °C, 20/30 °C, 30/45 °C and 25 °C. Germination and polyembryony were monitored over a period of 12 weeks. For all the treatments in this study, seeds from the short pod form exhibited significantly higher germination rates and higher occurrence of polyembryony than those from the long pod form. Seeds from the long pod form did not germinate at the lowest temperature of 10/20 °C; in contrast, those of the short pod form germinated under this condition, albeit at a lower rate. Results from this study could explain why the short pod form of D. unguis-cati is the more widely distributed form in Australia, while the long pod form is confined to a few localities. The results have implication in predicting future ranges of both forms of the invasive D. unguis-cati, as well as inform management decisions for control of the weed.
Resumo:
The characteristics of an in vitro polyuridylic acid dependent amino acid incorporating system prepared from germinating macroconidia of Microsporum canis are described. The incorporation of 14C-phenylalanine into polyphenylalanine is dependent on S-30 extract, adenosine triphosphate, magnesium ions and polyuridylic acid. Incorporation is slightly enhanced by yeast transfer ribonucleic acid and pyruvate kinase. The system is highly sensitive to ribonuclease, puromycin and miconazole (an antifungal agent), moderately sensitive to sodium fluoride and much less sensitive to phenethylalcohol, cycloheximide, chloramphenicol and deoxyribonuclease. Cell-free extract from ungerminated conidia has less capacity to synthesize the protein and during germination a marked increase in the protein synthetic activity is observed. The results from experiments wherein ribosomes and S-100 fraction from germinated and ungerminated spores are interchanged, revealed that the defect in the extract from the ungerminated spore is in the ribosomes.