891 resultados para Spatial structure
Resumo:
We provide a detailed account of the spatial structure of the Brazilian sardine (Sardinella brasiliensis) spawning and nursery habitats, using ichthyoplankton data from nine surveys (1976-1993) covering the Southeastern Brazilian Bight (SBB). The spatial variability of sardine eggs and larvae was partitioned into predefined spatial-scale classes (broad scale, 200-500 km; medium scale, 50-100 km; and local scale, <50 km). The relationship between density distributions at both developmental stages and environmental descriptors (temperature and salinity) was also explored within these spatial scales. Spatial distributions of sardine eggs were mostly structured on medium and local scales, while larvae were characterized by broad-and medium-scale distributions. Broad-and medium-scale surface temperatures were positively correlated with sardine densities, for both developmental stages. Correlations with salinity were predominantly negative and concentrated on a medium scale. Broad-scale structuring might be explained by mesoscale processes, such as pulsing upwelling events and Brazil Current meandering at the northern portion of the SBB, while medium-scale relationships may be associated with local estuarine outflows. The results indicate that processes favouring vertical stability might regulate the spatial extensions of suitable spawning and nursery habitats for the Brazilian sardine.
Resumo:
Questions What are the main features of the seed rain in a fragmented Atlantic forest landscape? Can seed rain species attributes (life form, dispersal mode, successional status) relate to the spatial arrangement (size and number of fragments, edge density and presence of corridor) of forest fragments in the landscape? How does the rain forest landscape structure affect the seed rain? Location Atlantic rainforest, Sao Paulo State, Southeastern Brazil. Methods Seed rain samples were collected monthly throughout 1yr, counted, identified and classified according to species dispersal mode, successional status and life form. Seed rain composition was compared with woody species near the seed traps. Relationships between seed rain composition and landscape spatial arrangement (fragment area, presence of corridor, number of fragments in the surroundings, proximity of fragments, and edge density) were tested using canonical correspondence analysis (CCA). Results We collected 20142 seeds belonging to 115 taxa, most of them early successional and anemochorous trees. In general, the seed rain had a species composition distinct from that of the nearby forest tree community. Small isolated fragments contained more seeds, mainly of anemochorous, epiphytic and early-successional species; large fragments showed higher association with zoochorous and late-successional species compared to small fragments. The CCA significantly distinguished the species dispersal mode according to fragment size and isolation, anemochorous species being associated to small and isolated fragments, and zoochorous species to larger areas and fragment aggregation. Nevertheless, a gradient driven by proximity (PROX) and edge density (ED) segregated lianas (in the positive extremity), early successional and epiphyte species (in the negative end); large fragments were positively associated to PROX and ED. Conclusions The results highlight the importance of the size and spatial arrangement of forest patches to promote habitat connectivity and improve the flux of animal-dispersed seeds. Landscape structure controls seed fluxes and affects plant dispersal capacity, potentially influencing the composition and structure of forest fragments. The seed rain composition may be used to assess the effects of landscape spatial structure on plant assemblages, and provide relevant information for biodiversity conservation.
Resumo:
We carried out 84 trawls in 41 seagrass meadows composed of the phanerogam Cymodocea nodosa at three islands of the Canarian Archipelago, during June to September 2003, in order to describe the associated ichthyofauna (composition, richness, and abundance), to analyze the role that this habitat can play in fish recruitment, and to determine the potential relationship between the spatial structure of the seagrass meadow and the patterns of richness and abundance of the fish assemblage. A total of 8298 individuals were captured. The five most relevant species, in terms of abundance and frequency, were Spondyliosoma cantharus, Diplodus annularis, Syngnathus typhle, Mullus surmuletus, and Pagellus erythrinus. Gran Canaria had the largest species richness (36 species) and mean number of species per sample (8.69 ± 0.49; mean ± SE). Lanzarote had the largest number of individuals (64.83% of the total registered) and mean total abundance per sample (168.39 ± 30.91). High densities of individuals were registered (95.86 ± 13.5) and 92.91% of fishes were juveniles. Our data showed that the physical configuration of the seagrass meadows did not significantly affect the patterns of richness and abundance of the associated fish assemblage. In conclusion, the C. nodosa meadows exhibited a singular ichthyofauna and they contribute to the maintenance of the diversity of the coastal fish assemblages in the Canarian Archipelago. This habitat constitutes, during spring and summer, a nursery habitat for juvenile fishes of many species, several of them commercially targeted.
Resumo:
In the last couple of decades we assisted to a reappraisal of spatial design-based techniques. Usually the spatial information regarding the spatial location of the individuals of a population has been used to develop efficient sampling designs. This thesis aims at offering a new technique for both inference on individual values and global population values able to employ the spatial information available before sampling at estimation level by rewriting a deterministic interpolator under a design-based framework. The achieved point estimator of the individual values is treated both in the case of finite spatial populations and continuous spatial domains, while the theory on the estimator of the population global value covers the finite population case only. A fairly broad simulation study compares the results of the point estimator with the simple random sampling without replacement estimator in predictive form and the kriging, which is the benchmark technique for inference on spatial data. The Monte Carlo experiment is carried out on populations generated according to different superpopulation methods in order to manage different aspects of the spatial structure. The simulation outcomes point out that the proposed point estimator has almost the same behaviour as the kriging predictor regardless of the parameters adopted for generating the populations, especially for low sampling fractions. Moreover, the use of the spatial information improves substantially design-based spatial inference on individual values.
Resumo:
Increasingly, regression models are used when residuals are spatially correlated. Prominent examples include studies in environmental epidemiology to understand the chronic health effects of pollutants. I consider the effects of residual spatial structure on the bias and precision of regression coefficients, developing a simple framework in which to understand the key issues and derive informative analytic results. When the spatial residual is induced by an unmeasured confounder, regression models with spatial random effects and closely-related models such as kriging and penalized splines are biased, even when the residual variance components are known. Analytic and simulation results show how the bias depends on the spatial scales of the covariate and the residual; bias is reduced only when there is variation in the covariate at a scale smaller than the scale of the unmeasured confounding. I also discuss how the scales of the residual and the covariate affect efficiency and uncertainty estimation when the residuals can be considered independent of the covariate. In an application on the association between black carbon particulate matter air pollution and birth weight, controlling for large-scale spatial variation appears to reduce bias from unmeasured confounders, while increasing uncertainty in the estimated pollution effect.
Resumo:
Patterns of size inequality in crowded plant populations are often taken to be indicative of the degree of size asymmetry of competition, but recent research suggests that some of the patterns attributed to size‐asymmetric competition could be due to spatial structure. To investigate the theoretical relationships between plant density, spatial pattern, and competitive size asymmetry in determining size variation in crowded plant populations, we developed a spatially explicit, individual‐based plant competition model based on overlapping zones of influence. The zone of influence of each plant is modeled as a circle, growing in two dimensions, and is allometrically related to plant biomass. The area of the circle represents resources potentially available to the plant, and plants compete for resources in areas in which they overlap. The size asymmetry of competition is reflected in the rules for dividing up the overlapping areas. Theoretical plant populations were grown in random and in perfectly uniform spatial patterns at four densities under size‐asymmetric and size‐symmetric competition. Both spatial pattern and size asymmetry contributed to size variation, but their relative importance varied greatly over density and over time. Early in stand development, spatial pattern was more important than the symmetry of competition in determining the degree of size variation within the population, but after plants grew and competition intensified, the size asymmetry of competition became a much more important source of size variation. Size variability was slightly higher at higher densities when competition was symmetric and plants were distributed nonuniformly in space. In a uniform spatial pattern, size variation increased with density only when competition was size asymmetric. Our results suggest that when competition is size asymmetric and intense, it will be more important in generating size variation than is local variation in density. Our results and the available data are consistent with the hypothesis that high levels of size inequality commonly observed within crowded plant populations are largely due to size‐asymmetric competition, not to variation in local density.
Resumo:
Persistence and abundance of species is determined by habitat availability and the ability to disperse and colonize habitats at contrasting spatial scales. Favourable habitat fragments are also heterogeneous in quality, providing differing opportunities for establishment and affecting the population dynamics of a species. Based on these principles, we suggest that the presence and abundance of epiphytes may reflect their dispersal ability, which is primarily determined by the spatial structure of host trees, but also by host quality. To our knowledge there has been no explicit test of the importance of host tree spatial pattern for epiphytes in Mediterranean forests. We hypothesized that performance and host occupancy in a favourable habitat depend on the spatial pattern of host trees, because this pattern affects the dispersal ability of each epiphyte and it also determines the availability of suitable sites for establishment. We tested this hypothesis using new point pattern analysis tools and generalized linear mixed models to investigate the spatial distribution and performance of the epiphytic lichen Lobaria pulmonaria, which inhabits two types of host trees (beeches and Iberian oaks). We tested the effects on L. pulmonaria distribution of tree size, spatial configuration, and host tree identity. We built a model including tree size, stand structure, and several neighbourhood predictors to understand the effect of host tree on L. pulmonaria. We also investigated the relative importance of spatial patterning on the presence and abundance of the species, independently of the host tree configuration. L. pulmonaria distribution was highly dependent on habitat quality for successful establishment, i.e., tree species identity, tree diameter, and several forest stand structure surrogates. For beech trees, tree diameter was the main factor influencing presence and cover of the lichen, although larger lichen-colonized trees were located close to focal trees, i.e., young trees. However, oak diameter was not an important factor, suggesting that bark roughness at all diameters favoured lichen establishment. Our results indicate that L. pulmonaria dispersal is not spatially restricted, but it is dependent on habitat quality. Furthermore, new spatial analysis tools suggested that L. pulmonaria cover exhibits a distinct pattern, although the spatial pattern of tree position and size was random.
Resumo:
Persistence and abundance of species is determined by habitat availability and the ability to disperse and colonize habitats at contrasting spatial scales. Favourable habitat fragments are also heterogeneous in quality, providing differing opportunities for establishment and affecting the population dynamics of a species. Based on these principles, we suggest that the presence and abundance of epiphytes may reflect their dispersal ability, which is primarily determined by the spatial structure of host trees, but also by host quality. To our knowledge there has been no explicit test of the importance of host tree spatial pattern for epiphytes in Mediterranean forests. We hypothesized that performance and host occupancy in a favourable habitat depend on the spatial pattern of host trees, because this pattern affects the dispersal ability of each epiphyte and it also determines the availability of suitable sites for establishment. We tested this hypothesis using new point pattern analysis tools and generalized linear mixed models to investigate the spatial distribution and performance of the epiphytic lichen Lobaria pulmonaria, which inhabits two types of host trees (beeches and Iberian oaks). We tested the effects on L. pulmonaria distribution of tree size, spatial configuration, and host tree identity. We built a model including tree size, stand structure, and several neighbourhood predictors to understand the effect of host tree on L. pulmonaria. We also investigated the relative importance of spatial patterning on the presence and abundance of the species, independently of the host tree configuration. L. pulmonaria distribution was highly dependent on habitat quality for successful establishment, i.e., tree species identity, tree diameter, and several forest stand structure surrogates. For beech trees, tree diameter was the main factor influencing presence and cover of the lichen, although larger lichen-colonized trees were located close to focal trees, i.e., young trees. However, oak diameter was not an important factor, suggesting that bark roughness at all diameters favoured lichen establishment. Our results indicate that L. pulmonaria dispersal is not spatially restricted, but it is dependent on habitat quality. Furthermore, new spatial analysis tools suggested that L. pulmonaria cover exhibits a distinct pattern, although the spatial pattern of tree position and size was random.
Resumo:
Spatial variability of Vertisol properties is relevant for identifying those zones with physical degradation. In this sense, one has to face the problem of identifying the origin and distribution of spatial variability patterns. The objectives of the present work were (i) to quantify the spatial structure of different physical properties collected from a Vertisol, (ii) to search for potential correlations between different spatial patterns and (iii) to identify relevant components through multivariate spatial analysis. The study was conducted on a Vertisol (Typic Hapludert) dedicated to sugarcane (Saccharum officinarum L.) production during the last sixty years. We used six soil properties collected from a squared grid (225 points) (penetrometer resistance (PR), total porosity, fragmentation dimension (Df), vertical electrical conductivity (ECv), horizontal electrical conductivity (ECh) and soil water content (WC)). All the original data sets were z-transformed before geostatistical analysis. Three different types of semivariogram models were necessary for fitting individual experimental semivariograms. This suggests the different natures of spatial variability patterns. Soil water content rendered the largest nugget effect (C0 = 0.933) while soil total porosity showed the largest range of spatial correlation (A = 43.92 m). The bivariate geostatistical analysis also rendered significant cross-semivariance between different paired soil properties. However, four different semivariogram models were required in that case. This indicates an underlying co-regionalization between different soil properties, which is of interest for delineating management zones within sugarcane fields. Cross-semivariograms showed larger correlation ranges than individual, univariate, semivariograms (A ≥ 29 m). All the findings were supported by multivariate spatial analysis, which showed the influence of soil tillage operations, harvesting machinery and irrigation water distribution on the status of the investigated area.
Resumo:
Hydrographers have traditionally referred to the nearshore area as the "white ribbon" area due to the challenges associated with the collection of elevation data in this highly dynamic transitional zone between terrestrial and marine environments. Accordingly, available information in this zone is typically characterised by a range of datasets from disparate sources. In this paper we propose a framework to 'fill' the white ribbon area of a coral reef system by integrating multiple elevation and bathymetric datasets acquired by a suite of remote-sensing technologies into a seamless digital elevation model (DEM). A range of datasets are integrated, including field-collected GPS elevation points, terrestrial and bathymetric LiDAR, single and multibeam bathymetry, nautical chart depths and empirically derived bathymetry estimations from optical remote sensing imagery. The proposed framework ranks data reliability internally, thereby avoiding the requirements to quantify absolute error and results in a high resolution, seamless product. Nested within this approach is an effective spatially explicit technique for improving the accuracy of bathymetry estimates derived empirically from optical satellite imagery through modelling the spatial structure of residuals. The approach was applied to data collected on and around Lizard Island in northern Australia. Collectively, the framework holds promise for filling the white ribbon zone in coastal areas characterised by similar data availability scenarios. The seamless DEM is referenced to the horizontal coordinate system MGA Zone 55 - GDA 1994, mean sea level (MSL) vertical datum and has a spatial resolution of 20 m.
Resumo:
This thesis consisted of two major parts, one determining the masking characteristics of pixel noise and the other investigating the properties of the detection filter employed by the visual system. The theoretical cut-off frequency of white pixel noise can be defined from the size of the noise pixel. The empirical cut-off frequency, i.e. the largest size of noise pixels that mimics the effect of white noise in detection, was determined by measuring contrast energy thresholds for grating stimuli in the presence of spatial noise consisting of noise pixels of various sizes and shapes. The critical i.e. minimum number of noise pixels per grating cycle needed to mimic the effect of white noise in detection was found to decrease with the bandwidth of the stimulus. The shape of the noise pixels did not have any effect on the whiteness of pixel noise as long as there was at least the minimum number of noise pixels in all spatial dimensions. Furthermore, the masking power of white pixel noise is best described when the spectral density is calculated by taking into account all the dimensions of noise pixels, i.e. width, height, and duration, even when there is random luminance only in one of these dimensions. The properties of the detection mechanism employed by the visual system were studied by measuring contrast energy thresholds for complex spatial patterns as a function of area in the presence of white pixel noise. Human detection efficiency was obtained by comparing human performance with an ideal detector. The stimuli consisted of band-pass filtered symbols, uniform and patched gratings, and point stimuli with randomised phase spectra. In agreement with the existing literature, the detection performance was found to decline with the increasing amount of detail and contour in the stimulus. A measure of image complexity was developed and successfully applied to the data. The accuracy of the detection mechanism seems to depend on the spatial structure of the stimulus and the spatial spread of contrast energy.
Resumo:
We develop, implement and study a new Bayesian spatial mixture model (BSMM). The proposed BSMM allows for spatial structure in the binary activation indicators through a latent thresholded Gaussian Markov random field. We develop a Gibbs (MCMC) sampler to perform posterior inference on the model parameters, which then allows us to assess the posterior probabilities of activation for each voxel. One purpose of this article is to compare the HJ model and the BSMM in terms of receiver operating characteristics (ROC) curves. Also we consider the accuracy of the spatial mixture model and the BSMM for estimation of the size of the activation region in terms of bias, variance and mean squared error. We perform a simulation study to examine the aforementioned characteristics under a variety of configurations of spatial mixture model and BSMM both as the size of the region changes and as the magnitude of activation changes.
Resumo:
Examining the spatial structure of clusters is essential for deriving regional development policy implications. In this study, we identify the manufacturing clusters in Cambodia, the Lao People's Democratic Republic, and Thailand, using two indices—global extent (GE) and local density (LD)—as proposed by Mori and Smith (2013). We also analyze four different combinations of these indices to highlight the spatial structures of industrial agglomerations. Since industrial clusters often spread over administrative boundaries, the GE and LD indices—along with cluster mapping—display how the detected clusters fit into specific spatial structures.
Resumo:
US Cycle logistics is emerging as a promising alternative in urban freight transport. Compared to fossil fuelled vans, the use of cycles for delivering goods within urban areas offers advantages in terms of environmental friendliness, economic efficiency, flexibility, and liveability of urban neighbourhood. At the same time, cycle logistics has to face limits in terms of weight and volume of goods that can be delivered, distances that can be covered, and spatial urban structures that can be served. This latter issue has till now received less attention in the scientific literature: it is generally recognized that cycle logistics performs at its best in inner urban areas, but no systematic study has been realized to identify specific spatial requisites for the effectiveness of cycle logistics. This paper provides a brief review of the main issues that emerge from the literature over cycle logistics, and contributes to stimulate the debate over the spatial dimension of cycle logistics: it presents a classification of cycle logistics schemes, on the basis of their integration with other urban logistic facilities and of the spatial structure of delivery operations. A three-level classification is proposed, depending on the type of goods consolidation: only distribution without consolidation, consolidation in a fixed urban consolidation centre, or consolidation in a mobile depot; for each level, operational examples and case studies are provided. This systematizing typology could support both public and private operators in decisions about the organization of cycle logistics facilities, such as the location of urban consolidation centres or the composition of cycle fleets.
Resumo:
Insect monitoring and sampling programmes are used in the stored grains industry for the detection and estimation of insect pests. At the low pest densities dictated by economic and commercial requirements, the accuracy of both detection and abundance estimates can be influenced by variations in the spatial structure of pest populations over short distances. Geostatistical analysis of Rhyzopertha dominica populations in 2 dimensions showed that, in both the horizontal and vertical directions and at all temperatures examined, insect numbers were positively correlated over short (0-5cm) distances, and negatively correlated over longer (≥10cm) distances. Analysis in 3 dimensions showed a similar pattern, with positive correlations over short distances and negative correlations at longer distances. At 35°C, insects were located significantly further from the grain surface than at 25 and 30°C. Dispersion metrics showed statistically significant aggregation in all cases. This is the first research using small sample units, high sampling intensities, and a range of temperatures, to show spatial structuring of R. dominica populations over short distances. This research will have significant implications for sampling in the stored grains industry.