954 resultados para Southern Hemisphere
Resumo:
Recent changes in the summer climate of the Southern Hemisphere extra-tropics are primarily related to the dominance of the positive phase of the Southern Annular Mode1, 2. This shift in the behaviour of the Southern Annular Mode—essentially a measure of the pressure gradient between Southern Hemisphere mid and high latitudes—has been predominantly induced by polar stratospheric ozone depletion2, 3, 4. The concomitant southward expansion of the dry subtropical belts5, 6 could have consequences for forest growth. Here, we use tree-ring records from over 3,000 trees in South America, Tasmania and New Zealand to identify dominant patterns of tree growth in recent centuries. We show that the foremost patterns of growth between 1950 and 2000 differed significantly from those in the previous 250 years. Specifically, growth was higher than the long-term average in the subalpine forests of Tasmania and New Zealand, but lower in the dry-mesic forests of Patagonia. We further demonstrate that variations in the Southern Annular Mode can explain 12–48% of the tree growth anomalies in the latter half of the twentieth century. Tree-ring-based reconstructions of summer Southern Annular Mode indices suggest that the high frequency of the positive phase since the 1950s is unprecedented in the past 600 years. We propose that changes in the Southern Annular Mode have significantly altered tree growth patterns in the Southern Hemisphere.
Resumo:
This study presents a comprehensive assessment of high-resolution Southern Hemisphere (SH) paleoarchives covering the last 2000 years. We identified 174 monthly to annually resolved climate proxy (tree ring, coral, ice core, documentary, speleothem and sedimentary) records from the Hemisphere. We assess the interannual and decadal sensitivity of each proxy record to large-scale circulation indices from the Pacific, Indian and Southern Ocean regions over the twentieth century. We then analyse the potential of this newly expanded palaeoclimate network to collectively represent predictands (sea surface temperature, sea level pressure, surface air temperature and precipitation) commonly used in climate reconstructions. The key dynamical centres-of-action of the equatorial Indo-Pacific are well captured by the palaeoclimate network, indicating that there is considerable reconstruction potential in this region, particularly in the post AD 1600 period when a number of long coral records are available. Current spatiotemporal gaps in data coverage and regions where significant potential for future proxy collection exists are discussed. We then highlight the need for new and extended records from key dynamical regions of the Southern Hemisphere. Although large-scale climate field reconstructions for the SH are in their infancy, we report that excellent progress in the development of regional proxies now makes plausible estimates of continental- to hemispheric-scale climate variations possible.
Resumo:
We explore the impact of a latitudinal shift in the westerly wind belt over the Southern Ocean on the Atlantic meridional overturning circulation (AMOC) and on the carbon cycle for Last Glacial Maximum background conditions using a state-of-the-art ocean general circulation model. We find that a southward (northward) shift in the westerly winds leads to an intensification (weakening) of no more than 10% of the AMOC. This response of the ocean physics to shifting winds agrees with other studies starting from preindustrial background climate, but the responsible processes are different. In our setup changes in AMOC seemed to be more pulled by upwelling in the south than pushed by downwelling in the north, opposite to what previous studies with different background climate are suggesting. The net effects of the changes in ocean circulation lead to a rise in atmospheric pCO2 of less than 10 atm for both northward and southward shift in the winds. For northward shifted winds the zone of upwelling of carbon- and nutrient-rich waters in the Southern Ocean is expanded, leading to more CO2 outgassing to the atmosphere but also to an enhanced biological pump in the subpolar region. For southward shifted winds the upwelling region contracts around Antarctica, leading to less nutrient export northward and thus a weakening of the biological pump. These model results do not support the idea that shifts in the westerly wind belt play a dominant role in coupling atmospheric CO2 rise and Antarctic temperature during deglaciation suggested by the ice core data.
Resumo:
Mode of access: Internet.
Resumo:
"March 1992."
Resumo:
Vols. 4 and 5, designed to contain the results of the astronomical observations, were not published. The material was published later by the U.S. Naval observatory in its Astronomical and meteorological observations. (Washington observations) for 1868, app. I, 1871, and Astronomical, magnetic and meteorological observations (Washington observations) for 1890, app. I, 1895.
Resumo:
Mode of access: Internet.
Resumo:
"From the Memoirs of the Royal Astronomical Society, vol. XLVIII."
Resumo:
We have made AMS measurements on a series of 10-ring samples from a subfossil Huon pine log found in western Tasmania (42degreesS, 145degreesE). The results show a pronounced rise in Delta(14)C over the first 200 years, and a decrease over the following 160 years. Tree-ring width measurements indicate that this log (catalogue SRT-447) can be cross-dated with another subfossil log (SRT-416) for which a series of high-precision radiometric C-14 measurements have previously been made. When the two tree-ring series are thus aligned, SRT-447 is the older of the two logs, and there is a 139-year overlap. We then have a Huon pine floating chronology spanning 680 years, with C-14 measurements attached. The C-14 data sets agree well within the period of overlap indicated by the tree-rings. The C-14 variations from Huon pine show excellent agreement with those from German oak and pine for the period 10,350-9670 cal BP. Aligning the Huon pine C-14 Series with that from German oak and pine allows us to examine the inter-hemispheric offset in C-14 dates in the early Holocene. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We present an improved database of planktonic foraminiferal census counts from the Southern Hemisphere Oceans (SHO) from 15°S to 64°S. The SHO database combines 3 existing databases. Using this SHO database, we investigated dissolution biases that might affect faunal census counts. We suggest a depth/[DCO3]2- threshold of ~3800 m/[DCO3]2- = ~-10 to -5 µmol/kg for the Pacific and Indian Oceans, and ~4000 m/[DCO3]2- = ~0 to 10 µmol/kg for the Atlantic Ocean, under which core-top assemblages can be affected by dissolution and are less reliable for paleo-sea surface temperature (SST) reconstructions. We removed all core-tops beyond these thresholds from the SHO database. This database has 598 core-tops and is able to reconstruct past SST variations from 2° to 25.5°C, with a root mean square error of 1.00°C, for annual temperatures. To inspect dissolution affects SST reconstruction quality, we tested the data base with two "leave-one-out" tests, with and without the deep core-tops. We used this database to reconstruct Summer SST (SSST) over the last 20 ka, using the Modern Analog Technique method, on the Southeast Pacific core MD07-3100. This was compared to the SSST reconstructed using the 3 databases used to compile the SHO database. Thus showing that the reconstruction using the SHO database is more reliable, as its dissimilarity values are the lowest. The most important aspect here is the importance of a bias-free, geographic-rich, database. We leave this dataset open-ended to future additions; the new core-tops must be carefully selected, with their chronological frameworks, and evidence of dissolution assessed.
Resumo:
In order to investigate rapid climatic changes at mid-southern latitudes, we have developed centennial-scale paleoceanographic records from the southwest Pacific that enable detailed comparison with Antarctic ice core records. These records suggest close coupling of mid-southern latitudes with Antarctic climate during deglacial and interglacial periods. Glacial sections display higher variability than is seen in Antarctic ice cores, which implies climatic decoupling between mid- and high southern latitudes due to enhanced circum-Antarctic circulation. Structural and temporal similarity with the Greenland ice core record is evident in glacial sections and suggests a degree of interhemispheric synchroneity not predicted from bipolar ice core correlations.