956 resultados para Slope stability


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on field survey, laboratory testing and numerical modeling, engineering characteristics of undisturbed loess and the mechanism of long-runout loess landslides caused by underground water level rise, as well as the formation conditions and spatial distribution of landslides, are systematically studied and analyzed. Loess landslides at south Plateau of Jingyang County are mainly classified as flowslide, slide and fall. Flowslide is the main type characteristic of high velocity, long runout and multi-stages. The steep relief composed of loose structured loess-old aged soil serials and the rise of groundwater table are the predominant conditions for landslides in the study area. To study loess mechanic poperties and loess landslides mechanisims, isotropically and anisotropically consolidated undrained compression(ICU and ACU) tests and constant-deviator-drained compression (CQD) tests were carried out on undisturbed samples. The results of undrained compression tests performed at the in-situ stress level show that the soils are of consistently strain-softening in the stress-strain relations and cause high excess pore pressure. The steady-state line and the potential region of instability are obtained from ICU and ACU test results. A necessary condition for liquefaction is that the soil state initially lies in or is brought into the potential instability region. In addition, a strong strain-softening model is also formed. CQD tests demonstrate that the mobilized friction angle is far less than the steady-state angle and that the soil experiences undrained contractive failure suddenly at very small strains when its stress path during drained loading tries to cross the potential instability region,thus validates the proposed instability region. Based on the location of the region of potential instability and the stress state of slope soil, a method of static liquefaction analysis is proposed for loess landslides caused by rise in groundwater table. Compared with other liquefaction analysis methods, this method overcomes the limitations inherent in conventional slope stability method and undrained brittleness index method. Triaxial tests composed of constant water content (CW) and wetting tests at constant deviator stress are performed on undisturbed unsaturated samples. The stress-strain relation of CW tests takes on strain-hardening behavior; The results of wetting tests at constant deviator stress designed to study the mechanics of failure of unsaturated loess caused by an increase in the degree of saturation (wetting) shows that a contractive failure occurs in the undisturbed samples. On the basis of the above triaxial test results, the initiation of static liquefaction is presented for long-runout loess landslides caused by rise in groundwater table, that is, the loess slope soil gradually transfer from unsaturated to saturated state under the infiltration of irrigation. A contractive failure occurs in the local region at very small strain by increasing the pore-water pressure at constant deviator stresses under drained conditons. It is the contractive failrue resulting from rise of pore pressure that leads to high excess pore pressure in the neighbour soil which reduces shear resistance of soil. The neighbour soils also fail due to the rapid increase in pore-water pressure. Thus a connected failure surface is developed quickly and a flowslide occurs. Based on the saturated-unsaturated seepage theory, transient seepage is computed using the finite element method on loess slope under groundwater table rise. Pore-water pressure distribution for every time step after irrigation are obtained. The phreatic surface in the slope increases with the groundwater table. Pore-water pressure distribution within 8m above the phreatic surface changes very quickly,but the water content and pore water pressure in the region ranging from 8m above the phreatic surface up to ground surface is almost not affected and the matric suction usually is kept at 100~120 kPa. Based on the results of laboratory tests and seepage flow analysis, the development process of loess landslide is modeled considering groundwater table rise. The shearing plastic zone first occurs at the slope toe where the soil is soaked for long term during rise in groundwater table. As irrigation continues, the shearing plastic zone gradually extends to the interior soils, with the results that the tensile plastic zone occurs at the slope crown. As time goes on, both the shearing plastic zone and tensile plastic zone continue to extend. Then a connected plastic zone is formed and fowslide occurs. In comparision to laboratory test results, the results of numerical simulation quite well verify the presented mechanism of static liquefaction of long-runout loess landslides caused by rise in groundwater table.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract The karsrt erosion engineering geology became a highlight problem in recent years, in particularly, the karst erosion of marlite of Badong formation made the rock mechanics weaken in Three Gorges Reservoir area, which reduces the safety of slope. During the immigrant construction, many high slopes have been formed, whose instabilities problems pose serious threats to the safety of the people and properties. The accidents of the slope failure take place now and then. By testing, it has been found that the karst erosion pattern and dissolution rate of marlite are not weaker than that of the pure limestone. Furthermore, owning to the weathering and unloading, the karst erosion of the marlite will reach certain depth of the slope, which is named infiltrated karst erosion. The karst erosion made the rock mass quality of slope or foundation worse in a large scale. The karst erosion geological disasters, taken place or not, has become the main restrictive factors to the social stability and economic development. Thus the karst erosion process and mechanism of marlite of Badong formation are studied as the main content of this dissertation. The weakening characteristic of rock mass mechanics parameters are studied along with the rock mass structure deformation and failure processes in the course of the karst erosion. At first, the conditions and influencing factors of the karst erosion are analyzed in the investigative region, on the basis of different karst erosion phenomenon of the marlite and different failure modes of slope. Then via indoor the karst erosion tests, it is analyzed that the karst erosion will change the rock mass composition and its structure. Through test, the different karst erosion phenomena between micro and macro have been observed, and the karst erosion mechanism of the marlite has been summarized. Damage theory is introduced to explain the feature of dissolution pore and the law of crack propagation in the marlite. By microscope and the references data, it can be concluded that the karst erosion process can be divided into rock minerals damage and rock structural damage. And the percent of karst erosion volume is named damage factor, which can be used to describe the quantify karst erosion degree of marlite. Through test, the rock mechanical properties in the different period of karst erosion are studied. Based on the damage mechanics theory and the test result, the relation between the karst erosion degree of marlite and weakening degree of mechanical properties is summarized. By numerical simulations, the karst erosive rock mass mechanics is verified. The conclusion is drawn as below: to the rock mass of marlite, the karst erosion damage made mechanics parameters variation, the deformation modulus, cohesion, and inter friction angle reduce as the negative exponent with the increasing of the karst erosion volume, however, the Poisson ratio increases as the positive exponent with the karst erosion volume increasing. It should be noticed that the deduced formulations are limited to the test data and certain conditions. It is suitable to the rock mass parametric weakening process after the karst erosion of marlite in Three Gorges Reservoir area. Based on the failure types of marlite slope in the field, the karst erosion and weathering process of rock mass are analyzed. And the evolution law of deformation and failure of the marlite mass is studied. The main failure feature of the marlite slope is the karst erosive structure subsidence mode in Three Gorges Reservoir area. The karst erosive structure subsidence mode is explained as follows: the rock mass undergoes the synthetic influence, such as weathering, unloading, corrosion, and so on, many pores and cavities have been formed in the rock mass interior, the rock mass quality is worsen and the rock mass structure is changed, and then the inherent structure of rock mass is collapsed under its gravity, therefore, the failure mode of compaction and subsidence take place. Finally, two examples are used to verify the rock mass parameters in Three Gorges Reservoir area, and the relationship between the marlite slope stability and the time of karst erosion is proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Toppling is a major failure model in anti-dip layered rock slopes. Because of the limited by testing means and experimental apparatus, present research on the deformation mechanism and stability analysis are mainly focus on the 2-Dimensional deformation, and the research really based on 3-Dimension is still limited. Therefore, based on the present research station, the article rely on the important hydroelectric project of typical anti-dip layered rock slopes -- The left bank slope of Long-tan hydropower-station in Guang Xi, China, and focused on the influencing factors, deformation mechanism and stability analysis of anti-dip layered rock slopes, three problems as follows are researched in this paper. (1) Deformation influencing factor analysis on ant-dip layered rock slopes Three influencing factors are included: geological factor, engineering factor and environmental factor. It is concluded that the toppling deformation of anti-dip layered rock slopes are more sensitive to geological and engineering factors, but less sensitive to environmental factor. In addition, the sensitivity of various factors to the rock toppling deformation is also arranged sequentially as follows: construction, gravitation, rainfall (underground water) and rock structure intensity, etc. (2) 3D deformation study on the anti-dip layered toppling rock slopes Used 3D Distinct Element Method (3DEC) analyzed the 3D deformation characteristic of anti-dip layered rock slops. It can be seen that the toppling characteristics are obvious when the inter-angle between slope direction and layer striking direction is under 20o, when the inter-angle is over 20o and equal or less than 40o,the toppling deformation characteristics decrease sharply with increase of inter-angle, when the inter-angle is over 40o , the slope deformation is not controlled by joints but influenced by other failure mode. Therefore, in order to quantify the toppling characteristics, a differential value of displacement vector angle between layered rock slope and block rock slope is proposed as a key index to distinguish failure model for anti-dip layered rock slopes, and it was applied to study the toppling of the rock slopes at Guangxi Long-tan hydropower station, China. The results indicated that the index was effective and instructive for analyzing the anti-dip layered rock slopes. (3) Stability analysis methods Because of the imperfection of some present slope analysis methods, based on slope failure mode and those three influencing factors, “slope stability entropy” method is defined in this paper, which makes good use of the sensitivity of relational matrix to influencing factors on slope stability and the qualification characteristics for information entropy to the irregularity of slope deformation. By this method, not only the randomness of geologic body on the base of dynamic analysis of slope failure mode is fully concerned, but also it makes the analysis time-saving and simple. Finally, the research findings were used to the engineering example successfully, and rational conclusion has been obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

China is a mountainous country in which geological hazards occurred frequently, especially in the east of China. Except the geology, topography and extreme climate, the large scale human activities have become a major factor to landslides. Typical human activities which induced landslides are fill, cut and underground mining. On the topic of the deformation mechanism and slope stability, taking three different man-made slopes as examples, deformation mechanism and slope stability were studied by several methods, such as field work, numerical modeling and monitor. The details are as following: (1) The numerical modeling approach advantages over other conventional methods such as limit methods, so the numerical modeling is the major tool in this thesis. So far, there is no uniform failure criterion for numerical simulation. The failure criterion were summarized and analyzed firstly, subsequently the appropriate criterion was determinated. (2) Taking 220kV Yanjin transformation substation fill slope as example, the deformable characteristic, unstable mode and laboratory tests were studied systematically. The results show: the slope deformation was probably caused by a combination effect of unfavorable topographic, geological and hydro geological conditions, and external loading due to filling. It was concluded that the creep deformation of the slope was triggered by external loading applied at the back of the slope. In order to define the calculating parameters, a set of consolidated drained (CD) tests, consolidated undrained (CU) tests, repeated direct shear tests and UCS tests were carried out. The stability of the slope before and after reinforcement was assessed using 3D numerical modeling and shear strength reduction technique. The numerical modeling results showed: the factor of safety (FOS) of the slope was 1.10 in the natural state, and reduced to 1.03 after fill, which was close to the critical state and it caused creeping slip or deformation under rainfall. The failure surface in the slope is in active shear failure, whereas tensile failure occurs at the slope crest. After the site was reinforced with piles, the FOS was 1.27. Therefore, the slope is stable after reinforcement measures were taken. (3) The cut slope stability is a complex problem. Taking the left cut slope of Xiangjiaba as example in this thesis, the deformation and slope stability were studied systematically by numerical modeling and monitor methods. The numerical results show: the displacement is gradually increasing along with the cutting, and the largest displacement is 27.5mm which located at the bench between the elevation 340 and 380. Some failure state units distribute near the undermining part and there is no linked failure state occurred from crest to bottom during cutting. After cutting, some failure units appeared at the ground surface between elevation 340 and 360. The increasing tense stress made the disturbed rock failed. The slope is stable after cutting by the monitor method, such as surface monitor, multipoint displacement meter, inclinometer and anchor cable tensometer. (4) The interaction between underground mining and slope stability is a common situation in mountainous. The slope deformation mechanism induced by underground mining may contributed significantly to slope destabilization. The Mabukan slope in xiangjiaba was analyzed to illustrate this. Failure mechanism and the slope stability were presented by numerical modeling and residual deformation monitor. The results show: the roof deformed to the free face and the floor uplift lightly to the free face. The subsidence basin is formed, but the subsidence and the horizontal movement is small, and there is no failure zone occurred. When the underground mining is going on, the roof deformation, subsidence and the horizontal movements begin increasing. The rock deformation near the free face is larger than the ground surface, and the interaction between these coal seams appeared. There are some tensile failures and shear failures occurred on the roof and floor, and a majority of failure is tensile failure. The roof deformation, subsidence and the horizontal movements increased obviously along with the underground mining. The failure characteristic is shear failure which means the tensile stress transformed to the compressive stress. So the underground mining will induced tensile stress first which lead to structure crack, subsequently the compressive stress appeared which result in slippage. The crest was subjected to horizontal tension which made the rock crack along with the joint. The long term residual deformation monitor demonstrates that the slope is stable after the underground mining stopped.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Theory of limit analysis include upper bound theorem and lower bound theorem. To deal with slope stability analysis by limit analysis is to approximate the real solution from upper limit and lower limit. The most used method of limit analysis is upper bound theorem, therefore it is often applied to slope engineering in many cases. Although upper bound approach of limit analysis can keep away from vague constitutive relation and complex stress analyses, it also can obtain rigorous result. Assuming the critical surface is circular slip surface, two kinematically admissible velocity fields for perpendicular slice method and radial slice method can be established according to the limit analysis of upper bound theorem. By means of virtual work rate equation and strength reduction method, the upper-bound solution of limit analysis for homogeneous soil slope can be obtained. A log-spiral rotational failure mechanism for homogeneous slope is discussed from two different conditions which represent the position of shear crack passing the toe and below the toe. In the dissertition, the author also establishes a rotational failure mechanics with combination of different logarithmic spiral arcs. Furthermore, the calculation formula of upper bound solution for inhomogeneous soil slope stability problem can be deduced based on the upper bound approach of rigid elements. Through calculating the external work rate caused by soil nail, anti-slide pile, geotechnological grid and retaining wall, the upper bound solution of safety factor of soil nail structure slope, slip resistance of anti-slide pile, critical height of reinforced soil slope and active earth pressure of retaining wall can be obtained by upper bound limit analysis method. Taking accumulated body slope as subject investigated, with study on the limit analysis method to calculate slope safety factor, the kinematically admissible velocity fields of perpendicular slice method for slope with broken slip surface is proposed. Through calculating not only the energy dissipation rate produced in the broken slip surfaces and the vertical velocity discontinuity, but also the work rate produced by self-weight and external load, the upper bound solution of slope with broken slip surface is deduced. As a case study, the slope stability of the Sanmashan landslide in the area of the Three Gorges reservoir is analyzed. Based on the theory of limit analysis, the upper bound solution for rock slope with planar failure surface is obtained. By means of virtual work-rate equation, energy dissipation caused by dislocation of thin-layer and terrane can be calculated; furthermore, the formulas of safety factor for upper bound approach of limit analysis can be deduced. In the end, a new computational model of stability analysis for anchored rock slope is presented after taking into consideration the supporting effect of rock-bolts, the action of seismic force and fissure water pressure. By using the model, not only the external woke-rate done by self-weight, seismic force, fissure water pressure and anchorage force but also the internal energy dissipation produced in the slip surface and structural planes can be totally calculated. According to the condition of virtual work rate equation in limit state, the formula of safety factor for upper bound limit analysis can be deduced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A large number of catastrophic accidents were aroused by the instability and destruction of anti-dip rock masses in the worldwide engineering projects, such as hydropower station, mine, railways and so on. Problems in relation to deformation and failure about anti-dip rock slopes are significant for engineering geology research. This dissertation takes the Longpan slope in the Jinsha River as a case to study the deformation mechanism of large-scale anti-dip rock masses and the slope stability analysis method. The primary conclusions are as follows. The Dale Reach of Jinsha River, from Longpan to the debouchment of Chongjiang tributary, is located in the southeastern margin of the Qinghai-Tibet Plateau. Longpan slope is the right embankment of Dale dam, it is only 26 km to the Shigu and 18 km to Tiger Leaping Gorge. The areal geology tectonic structures here area are complicated and blurry. Base on the information of geophysical exploration (CSAMT and seismology) and engineering geological investigation, the perdue tectonic pattern of Dale Reach is put forward for the first time in this paper. Due to the reverse slip of Longpan fault and normal left-rotation of Baihanchang fault, the old faulted valley came into being. The thick riverbed sediments have layered characters of different components and corresponding causes, which attribute to the sedimentary environments according with the new tectonic movements such as periodic mountain uplifting in middle Pleistocene. Longpan slope consists of anti-dip alternate sandstone and slate stratums, and the deformable volume is 6.5×107m3 approximately. It was taken for an ancient landslide or toppling failure in the past so that Dale dam became a vexed question. Through the latest field surveying, displacement monitoring and rock masses deforming characters analyses, the geological mechanism is actually a deep-seated gravitational bending deformation. And then the discrete element method is used to simulate the deforming evolution process, the conclusion accords very well with the geo-mechanical patterns analyses. In addition strength reduction method based on DEM is introduced to evaluate the factor of safety of anti-dip rock slope, and in accordance with the expansion way of the shear yielding zones, the progressive shear failure mechanism of large-scale anti-dip rock masses is proposed for the first time. As an embankment or a close reservoir bank to the lower dam, the stability of Longpan slope especially whether or not resulting in sliding with high velocity and activating water waves is a key question for engineering design. In fact it is difficult to decide the unified slip surface of anti-dip rock slope for traditional methods. The author takes the shear yielding zones acquired form the discrete element strength reduction calculation as the potential sliding surface and then evaluates the change of excess pore pressure and factor of stability of the slope generated by rapid drawdown of ponded water. At the same time the dynamic response of the slope under seismic loading is simulated through DEM numerical modeling, the following results are obtained. Firstly the effective effect of seismic inertia force is resulting in accumulation of shear stresses. Secondly the discontinuous structures are crucial to wave transmission. Thirdly the ultimate dynamic response of slope system takes place at the initial period of seismic loading. Lastly but essentially the effect of earthquake load to bringing on deformation and failure of rock slope is the coupling effect of shear stresses and excess pore water pressure accumulation. In view of limitations in searching the critical slip surface of rock slope of the existing domestic and international software for limit equilibrium slope stability analyses, this article proposes a new method named GA-Sarma Algorithm for rock slope stability analyses. Just as its name implies, GA-Sarma Algorithm bases on Genetic Algorithm and Sarma method. GA-Sarma Algorithm assumes the morphology of slip surface to be a broken line with traceability to extend along the discontinuous surface structures, and the slice boundaries is consistent with rock mass discontinuities such as rock layers, faults, cracks, and so on. GA-Sarma Algorithm is revolutionary method that is suitable for global optimization of the critical slip surface for rock slopes. The topics and contents including in this dissertation are closely related to the difficulties in practice, the main conclusions have been authorized by the engineering design institute. The research work is very meaningful and useful for the engineering construction of Longpan hydropower station.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soil-rock mixture (S-RM) refers to one extremely uneven loose rock and soil materials system with certain stone content. Its formation has started since Quaternary and it is composed of block stone, fine grained soil and pore with certain project scale and high strength. S-RM has extensive distribution in nature, especially in southwest China where the geotectonic background is complicated, the fracture activity is developed and the geomorphological characteristics of high mountain and steep gorge area are protuberant. This kind of complicated geologic body has developed wider in these areas. S-RM has obvious difference with the general soil or rock (rock mass) in physical and mechanical properties because its two components-“soil” and “rock-block” has extreme differences in physical and mechanical properties. The proposition of S-RM and its deep research are needed in the modern engineering construction. It is also the necessity in the modern development of rock and soil mechanics. The dissertation starts from the meso-structural characteristics of soil-rock and takes a systematic research on its meso-structural mechanics, deformation and failure mechanism and the stability of S-RM slope. In summary, it achieves the following innovative results and conclusions. There are various views on the conception of S-RM and its classification system. Based on the large number of field tests, the dissertation makes the conception and classification of S-RM more systematic. It systematically proposed the conception of meso-structural mechanics of S-RM. Thus the dissertation has laid a foundation for its deep study. With the fast development of the computer technology and digital image processing theory, digital image processing technology has been successfully applied in many fields and provided reliable technology support for the quantitative description of the structural characteristics of S-RM. Based on the digital image processing technology, the dissertation systematically proposes and developed the quantitative analysis method and quantitative index for the meso-structure of S-RM. The results indicate that the meso-structure such as its internal soil-rock granularity composition, the soil-rock shape and the orientability has obvious self-organization in the macro statistical level. The dissertation makes a systematic research on the physical mechanical properties, deformation and failure mechanism of S-RM based on large field test. It proposes the field test for the underwater S-RM and deduces the 3D data analysis method of in-situ horizontal push-shear test. The result indicates that S-RM has significant phenomenon of shear dilatancy in the shearing process, and its dilatancy will be more obvious with the increased proportion of rock or the decreased confining pressure. The proportion of rock has great effect on the strength of S-RM and rock-block, especially the spatial position of particles with comparatively big size has great effect on the shape and spatial position of the sample shear zone. The dissertation makes some improvements in the single ring infiltration test equipment and its application on the permeability of S-RM. The results indicate that the increasing of rock-block would make it more difficult for the soil to fill in the vacuity between the rock-block and the proportion would increase which would result in the increased permeability coefficient. The dissertation builds the real meso-structural model of S-RM based on the digital image processing technology. By using geometric reconstruction technology, it transfers the structural mode represented by Binary image into CAD format, which makes it possible to introduce the present finite element analysis software to take research on numerical experimental investigation. It systematically realizes leaping research from the image,geometric mode, to meso-structural mechanics numerical experiment. By using this method, the dissertation takes large scale numerical direct-shear test on the section of S-RM. From the mesoscopic perspective, it reveals three extended modes about the shear failure plane of S-RM. Based on the real meso-structural model and by using the numerical simulation test, the character and mechanics of seepage failure of S-RM are studied. At the same time, it builds the real structural mode of the slope based on the analysis about the slope crosssection of S-RM. By using the strength reduction method, it takes the research on the stability of S-RM and gets great achievements. The three dimensional geometric reconstruction technology of rock block is proposed, which provides technical support for the reconstruction of the 3D meso-structural model of S-RM. For the first time, the dissertation builds the stochastic structure model of two-dimensional and three-dimensional polygons or polyhedron based on the stochastic simulation technique of monte carlo method. It breaks the traditional research which restricted to the random generation method of regular polygon and develops the relevant software system (R-SRM2D/3D) which has great effect on meso-structural mechanics of S-RM. Based on the R-SRM software system which randomly generates the meso-structural mode of S-RM according to the different meso-structural characteristics, the dissertation takes a series of research on numerical test of dual axis and real three-axis, systematically analyses the meso destroy system, the effects of meso-structural characteristics such as on the stone content, size composition and block directionality on the macro mechanical behavior and macro-permeability. Then it proposes the expression of the upper and lower limit for the macro-permeability coefficient of the inhomogeneous geomaterials, such as S-RM. By using the strength reduction FEM, the dissertation takes the research on the stability of the slope structural mode of the randomly formed S-RM. The results indicate that generally, the stability coefficient of S-RM slope increases with the increasing of stone content; on the condition of the same stone content, the stability coefficient of slope will be different with different size composition and the space position of large block at the internal slop has great effect on the stability. It suggests that meso-structural characteristics, especially the space position of large block should be considered when analyzing the stability of this kind of slope and strengthening design. Taking Xiazanri S-RM slope as an example, the dissertation proposes the fine modeling of complicated geologic body based on reverse engineering and the generation method of FLAC3D mode. It resolves the bottleneck problem about building the fine structural mode of three-dimensional geological body. By using FLAC3D, the dissertation takes research on the seepage field and the displacement field of Xiazanri S-RM slope in the process of reservoir water level rising and decreasing. By using strength reduction method, it analyses the three-dimension stability in the process of reservoir water level rising and decreasing. The results indicate that the slope stability firstly show downward trend in the process of reservoir water level rising and then rebound to increase; the sudden drawdown of reservoir water level has great effect on the slope stability and this effect will increase with the sudden drawdown amplitude rising. Based on the result of the rock block size analysis of S-RM, and using R-SRM2D the stochastic structure model of Xiazanri S-RM slope is built. By using strength reduction method, the stability of the stochastic structure model is analysis, the results shows that the stability factor increases significantly after considering the block.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to realize fast development of the national economy in a healthy way and coordinate progress with whole society, the country has implemented the strategy of development of the western region. An important action of finishing this strategic task is to accelerate the highway construction in the western region, join the western region and places along the coast, the river, the border with goods and materials, technology, and personnel interchanges, and then drive development of the local economy.The western region was influenced by the Himalaya Tectonization in Cenozoic, and the crust rose and became the plateau. In the course of rising, rivers cut down sharply to form a lot of high mountains and gorges.Because of topography and geomorphology, bridges in the traffic construction in the alpine gorge area are needed. Rivers have characteristics of large flow, fast velocity and high and steep river valley, so building a pier in the river is not only very difficult, but also making the cost increase. At the same time, the impact that the pier is corroded and the bridge base that is drawn to be empty by flow are apt to cause destruction of the pier. For those reasons, suspending bridge and cable-stay bridge are usually adopted with the single and large span. For the large span bridge, the pier foundation could receive ten thousand and more vertical strength, bending moment and near kiloton horizontal thrust.Because bank slope in the alpine gorge district is cut deeply and unsettled big, natural stability is worse under endogenic and exogenic force. When bank slope bears heavy vertical strength, bending moment and horizontal thrust facing the river, it will inevitably make the balance state of rock and soil mass change, bridge bank slope deform, and even destroyed. So the key problem at the time of the large span's bridge construction in the alpine gorge area is how to make it stable.So based on the spot investigation, the Engineering Geology Analysis Method is very important to grasp the bank slope stability. It can provide the bank slope stability macroscopic ally and qualitatively, and reference to the indoor calculation. The Engineering Geology Analysis Method is that by way of analyzing and investigating terms of bank slope instability, stability development trend, the ancient rock slide and devolution in the site, stability comprehensive evaluation primarily, current and future stability of bank slope is gotten, realizing the intention to serving the concrete engineering.After the Engineering Geology Analysis Method is applied to project instances of BeiPan River Bridge and BaLin River Bridge, results are accord with bank slope actual conditions, which proves sites are suited to building bridges from site stability.we often meet bank slope stability issues in the traffic construction in the alpine gorge areao Before the evaluation of the bank slope stability, the engineering geological condition is investigated first. After that, the next exploration target and geology measures are decided. So, the Engineering Geology Analysis Method that the investigation of the engineering geological condition is the main content is quite important in practice. The other evaluations of the bank slope stability are based on it. Because foundation receives very heavy load, for the big span's bridge in the alpine gorge area, a long pile of the large diameter (D^0.8m) is usually selected. In order to reflect rock mass's deformation properties under rock-socketed pile function, the author has used the FLAG30 software for rock and soil mass and done many numerical simulations. By them, the author launches the further investigation on deformation properties of bank slope under different slope angle, pile length, diameter, elastic modulus, load, bank slope's structure, etc. Some conclusion meaningful to the design and produce are obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of small-scale tests was undertaken to verify if granular anchors could be used as a slope stabilisation technique. The nature of the material used and the resulting loading configuration are described here. The work confirms that the inclusion of anchors within a slope mass, irrespective of their number or orientation, significantly enhances the capacity and ductility of the failure mode. The small-scale nature of this research did influence the observed capacities, but the overarching hypothesis was confirmed. A simple analysis method is proposed that allows designers to accurately remediate natural or man-made slopes using existing analytical methods for slope stability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Slope instabilities – commonly triggered by rainfall – pose a geotechnical risk causing disruption to transport routes and incur significant financial resources. This article details laboratory, ground and remote sensing investigations carried out by Queen’s University Belfast and Transport Northern Ireland (TNI) to characterise and monitor slope instability on two higher risk infrastructure slopes in Northern Ireland. The research is used to update a noninvasive risk assessment model of slopes across the country’s road network to direct resources for future investigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interaction between problematic geology and environmental variables along the Antrim Coast Road results in frequent instances of geotechnical instability. During such instances of instability, mudslide debris encroaches on the carriageway posing a hazard to motorists, causing lengthily tailbacks. This paper examines some of the geotechnical and spatial analysis techniques currently being implemented to monitor slope stability on this key transport route.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese de doutoramento, Geografia (Geografia Física), Universidade de Lisboa, Instituto de Geografia e Ordenamento do Território, 2014

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho é realizado no domínio das obras de engenharia, área onde o desmonte de rocha com recurso a explosivos em obras rodoviárias é uma actividade específica e consistiu no acompanhamento e execução de três obras rodoviárias de média e grande dimensão. A necessidade de executar escavações, recorrendo a técnicas de desmonte cuidadoso de contorno, onde o plano de corte do talude final deve obedecer a requisitos de localização, alinhamento, inclinação, estabilidade e também estéticos, acrescendo a isto a necessidade de optimizar os meios envolvidos, obriga a que esta actividade seja encarada de uma forma sistematizada, visando o racional aproveitamento de recursos. A execução desta actividade requer conhecimentos no domínio das técnicas de desmonte de contorno, dos explosivos, do mecanismo de rotura de rochas, da operação de perfuração e da geomecânica dos maciços. A abordagem deste trabalho incide sobre a técnica denominada de pré‐corte e tem como objectivo encontrar uma equação característica que permita relacionar diferentes parâmetros envolvidos nesta actividade. Este objectivo é alcançado recorrendo à correlação entre equações relativas à pressão de detonação, à pressão no furo e ao espaçamento entre furos consecutivos, desenvolvidas por outros autores. Desta forma obteve‐se uma equação que relaciona parâmetros relativos ao maciço rochoso (resistência à tracção), ao explosivo (velocidade de detonação e densidade) e ao diagrama de fogo (concentração de carga – volume de explosivo e comprimento do furo – volume do furo). A comparação entre os valores destes parâmetros obtidos na produção e os obtidos com recurso à equação característica permite concluir que a sua aplicação para execução de futuras obras possibilita uma optimização dos meios envolvidos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Geociências e Meio Ambiente - IGCE