871 resultados para Simple linear regression
Resumo:
A combinatorial protocol (CP) is introduced here to interface it with the multiple linear regression (MLR) for variable selection. The efficiency of CP-MLR is primarily based on the restriction of entry of correlated variables to the model development stage. It has been used for the analysis of Selwood et al data set [16], and the obtained models are compared with those reported from GFA [8] and MUSEUM [9] approaches. For this data set CP-MLR could identify three highly independent models (27, 28 and 31) with Q2 value in the range of 0.632-0.518. Also, these models are divergent and unique. Even though, the present study does not share any models with GFA [8], and MUSEUM [9] results, there are several descriptors common to all these studies, including the present one. Also a simulation is carried out on the same data set to explain the model formation in CP-MLR. The results demonstrate that the proposed method should be able to offer solutions to data sets with 50 to 60 descriptors in reasonable time frame. By carefully selecting the inter-parameter correlation cutoff values in CP-MLR one can identify divergent models and handle data sets larger than the present one without involving excessive computer time.
Resumo:
This paper introduces and analyzes a stochastic search method for parameter estimation in linear regression models in the spirit of Beran and Millar [Ann. Statist. 15(3) (1987) 1131–1154]. The idea is to generate a random finite subset of a parameter space which will automatically contain points which are very close to an unknown true parameter. The motivation for this procedure comes from recent work of Dümbgen et al. [Ann. Statist. 39(2) (2011) 702–730] on regression models with log-concave error distributions.
Resumo:
The counterfactual decomposition technique popularized by Blinder (1973, Journal of Human Resources, 436–455) and Oaxaca (1973, International Economic Review, 693–709) is widely used to study mean outcome differences between groups. For example, the technique is often used to analyze wage gaps by sex or race. This article summarizes the technique and addresses several complications, such as the identification of effects of categorical predictors in the detailed decomposition or the estimation of standard errors. A new command called oaxaca is introduced, and examples illustrating its usage are given.
Resumo:
Linear regression is a technique widely used in digital signal processing. It consists on finding the linear function that better fits a given set of samples. This paper proposes different hardware architectures for the implementation of the linear regression method on FPGAs, specially targeting area restrictive systems. It saves area at the cost of constraining the lengths of the input signal to some fixed values. We have implemented the proposed scheme in an Automatic Modulation Classifier, meeting the hard real-time constraints this kind of systems have.
Resumo:
In the Bayesian framework, predictions for a regression problem are expressed in terms of a distribution of output values. The mode of this distribution corresponds to the most probable output, while the uncertainty associated with the predictions can conveniently be expressed in terms of error bars. In this paper we consider the evaluation of error bars in the context of the class of generalized linear regression models. We provide insights into the dependence of the error bars on the location of the data points and we derive an upper bound on the true error bars in terms of the contributions from individual data points which are themselves easily evaluated.
Resumo:
The main aim of this paper is to provide a tutorial on regression with Gaussian processes. We start from Bayesian linear regression, and show how by a change of viewpoint one can see this method as a Gaussian process predictor based on priors over functions, rather than on priors over parameters. This leads in to a more general discussion of Gaussian processes in section 4. Section 5 deals with further issues, including hierarchical modelling and the setting of the parameters that control the Gaussian process, the covariance functions for neural network models and the use of Gaussian processes in classification problems.
Spatial pattern analysis of beta-amyloid (A beta) deposits in Alzheimer disease by linear regression
Resumo:
The spatial patterns of discrete beta-amyloid (Abeta) deposits in brain tissue from patients with Alzheimer disease (AD) were studied using a statistical method based on linear regression, the results being compared with the more conventional variance/mean (V/M) method. Both methods suggested that Abeta deposits occurred in clusters (400 to <12,800 mu m in diameter) in all but 1 of the 42 tissues examined. In many tissues, a regular periodicity of the Abeta deposit clusters parallel to the tissue boundary was observed. In 23 of 42 (55%) tissues, the two methods revealed essentially the same spatial patterns of Abeta deposits; in 15 of 42 (36%), the regression method indicated the presence of clusters at a scale not revealed by the V/M method; and in 4 of 42 (9%), there was no agreement between the two methods. Perceived advantages of the regression method are that there is a greater probability of detecting clustering at multiple scales, the dimension of larger Abeta clusters can be estimated more accurately, and the spacing between the clusters may be estimated. However, both methods may be useful, with the regression method providing greater resolution and the V/M method providing greater simplicity and ease of interpretation. Estimates of the distance between regularly spaced Abeta clusters were in the range 2,200-11,800 mu m, depending on tissue and cluster size. The regular periodicity of Abeta deposit clusters in many tissues would be consistent with their development in relation to clusters of neurons that give rise to specific neuronal projections.
Resumo:
Non-linear relationships are common in microbiological research and often necessitate the use of the statistical techniques of non-linear regression or curve fitting. In some circumstances, the investigator may wish to fit an exponential model to the data, i.e., to test the hypothesis that a quantity Y either increases or decays exponentially with increasing X. This type of model is straight forward to fit as taking logarithms of the Y variable linearises the relationship which can then be treated by the methods of linear regression.
Resumo:
In some circumstances, there may be no scientific model of the relationship between X and Y that can be specified in advance and indeed the objective of the investigation may be to provide a ‘curve of best fit’ for predictive purposes. In such an example, the fitting of successive polynomials may be the best approach. There are various strategies to decide on the polynomial of best fit depending on the objectives of the investigation.
Resumo:
Multiple regression analysis is a complex statistical method with many potential uses. It has also become one of the most abused of all statistical procedures since anyone with a data base and suitable software can carry it out. An investigator should always have a clear hypothesis in mind before carrying out such a procedure and knowledge of the limitations of each aspect of the analysis. In addition, multiple regression is probably best used in an exploratory context, identifying variables that might profitably be examined by more detailed studies. Where there are many variables potentially influencing Y, they are likely to be intercorrelated and to account for relatively small amounts of the variance. Any analysis in which R squared is less than 50% should be suspect as probably not indicating the presence of significant variables. A further problem relates to sample size. It is often stated that the number of subjects or patients must be at least 5-10 times the number of variables included in the study.5 This advice should be taken only as a rough guide but it does indicate that the variables included should be selected with great care as inclusion of an obviously unimportant variable may have a significant impact on the sample size required.
Resumo:
1. The techniques associated with regression, whether linear or non-linear, are some of the most useful statistical procedures that can be applied in clinical studies in optometry. 2. In some cases, there may be no scientific model of the relationship between X and Y that can be specified in advance and the objective may be to provide a ‘curve of best fit’ for predictive purposes. In such cases, the fitting of a general polynomial type curve may be the best approach. 3. An investigator may have a specific model in mind that relates Y to X and the data may provide a test of this hypothesis. Some of these curves can be reduced to a linear regression by transformation, e.g., the exponential and negative exponential decay curves. 4. In some circumstances, e.g., the asymptotic curve or logistic growth law, a more complex process of curve fitting involving non-linear estimation will be required.
Resumo:
The accurate in silico identification of T-cell epitopes is a critical step in the development of peptide-based vaccines, reagents, and diagnostics. It has a direct impact on the success of subsequent experimental work. Epitopes arise as a consequence of complex proteolytic processing within the cell. Prior to being recognized by T cells, an epitope is presented on the cell surface as a complex with a major histocompatibility complex (MHC) protein. A prerequisite therefore for T-cell recognition is that an epitope is also a good MHC binder. Thus, T-cell epitope prediction overlaps strongly with the prediction of MHC binding. In the present study, we compare discriminant analysis and multiple linear regression as algorithmic engines for the definition of quantitative matrices for binding affinity prediction. We apply these methods to peptides which bind the well-studied human MHC allele HLA-A*0201. A matrix which results from combining results of the two methods proved powerfully predictive under cross-validation. The new matrix was also tested on an external set of 160 binders to HLA-A*0201; it was able to recognize 135 (84%) of them.