937 resultados para Sierpinski carpet fractal geometry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Arquitectura com Especialização em Urbanismo, apresentada na Universidade de Lisboa - Faculdade de Arquitectura.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present new analytical tools able to predict the averaged behavior of fronts spreading through self-similar spatial systems starting from reaction-diffusion equations. The averaged speed for these fronts is predicted and compared with the predictions from a more general equation (proposed in a previous work of ours) and simulations. We focus here on two fractals, the Sierpinski gasket (SG) and the Koch curve (KC), for two reasons, i.e. i) they are widely known structures and ii) they are deterministic fractals, so the analytical study of them turns out to be more intuitive. These structures, despite their simplicity, let us observe several characteristics of fractal fronts. Finally, we discuss the usefulness and limitations of our approa

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fractal antennas have been proposed to improve the bandwidth of resonant structures and optical antennas. Their multiband characteristics are of interest in radiofrequency and microwave technologies. In this contribution we link the geometry of the current paths built-in the fractal antenna with the spectral response. We have seen that the actual currents owing through the structure are not limited to the portion of the fractal that should be geometrically linked with the signal. This fact strongly depends on the design of the fractal and how the different scales are arranged within the antenna. Some ideas involving materials that could actively respond to the incoming radiation could be of help to spectrally select the response of the multiband design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This contribution presents novel concepts for analysis of pressure–volume curves, which offer information about the time domain dynamics of the respiratory system. The aim is to verify whether a mapping of the respiratory diseases can be obtained, allowing analysis of (dis)similarities between the dynamical pattern in the breathing in children. The groups investigated here are children, diagnosed as healthy, asthmatic, and cystic fibrosis. The pressure–volume curves have been measured by means of the noninvasive forced oscillation technique during breathing at rest. The geometrical fractal dimension is extracted from the pressure–volume curves and a power-law behavior is observed in the data. The power-law model coefficients are identified from the three sets and the results show that significant differences are present between the groups. This conclusion supports the idea that the respiratory system changes with disease in terms of airway geometry, tissue parameters, leading in turn to variations in the fractal dimension of the respiratory tree and its dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La geometría fractal permite estudiar de manera científica formas naturales como la de un arbol, romanesco o un copo de nieve en las que apreciamos irregularidades, estructura en todas las escalas y autosemenjanza. Algunos de los fractales más conocidos son la llamada curva de Koch o el triángulo de Sierpinski. Ambos se forman de una manera similar, se aplica una regla sencilla que se usa una y otra vez. Otra fuente de fractales es la iteración de funciones de variable compleja. El conjunto de Maldelbrot se crea a partir de este sistema. Para que cierta imagen sea un fractal no es suficiente con la autosemejanza, además hace falta una dimensión fractal, que se calcula con una serie de cuadrículas cada vez más finas que se superponen a la figura y se cuentan el número de cuadrados que tienen en común con la figura. A partir de los experimentos de Maldelbrot algunos artistas crearon el llamado arte fractal, obras de arte creadas mediante algoritmos matemáticos de generación de fractales y su posible manipulación posterior. También se usan para la composición musical que se crea a partir de una sucesión de números creados a partir de un algoritmo fractal. Esta música también se caracteriza por una estructura autosemejante.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fractal with microscopic anisotropy shows a unique type of macroscopic isotropy restoration phenomenon that is absent in Euclidean space [M. T. Barlow et al., Phys. Rev. Lett. 75, 3042]. In this paper the isotropy restoration feature is considered for a family of two-dimensional Sierpinski gasket type fractal resistor networks. A parameter xi is introduced to describe this phenomenon. Our numerical results show that xi satisfies the scaling law xi similar to l(-alpha), where l is the system size and alpha is an exponent independent of the degree of microscopic anisotropy, characterizing the isotropy restoration feature of the fractal systems. By changing the underlying fractal structure towards the Euclidean triangular lattice through increasing the side length b of the gasket generators, the fractal-to-Euclidean crossover behavior of the isotropy restoration feature is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Frequency Selective Surfaces (FSS) are periodic structures in one or two dimensions that act as spatial filters, can be formed by elements of type conductors patches or apertures, functioning as filters band-stop or band-pass respectively. The interest in the study of FSS has grown through the years, because such structures meet specific requirements as low-cost, reduced dimensions and weighs, beyond the possibility to integrate with other microwave circuits. The most varied applications for such structures have been investigated, as for example, radomes, antennas systems for airplanes, electromagnetic filters for reflective antennas, absorbers structures, etc. Several methods have been used for the analysis of FSS, among them, the Wave Method (WCIP). Are various shapes of elements that can be used in FSS, as for example, fractal type, which presents a relative geometric complexity. This work has as main objective to propose a simplification geometric procedure a fractal FSS, from the analysis of influence of details (gaps) of geometry of the same in behavior of the resonance frequency. Complementarily is shown a simple method to adjust the frequency resonance through analysis of a FSS, which uses a square basic cell, in which are inserted two reentrance and dimensions these reentrance are varied, making it possible to adjust the frequency. For this, the structures are analyzed numerically, using WCIP, and later are characterized experimentally comparing the results obtained. For the two cases is evaluated, the influence of electric and magnetic fields, the latter through the electric current density vector. Is realized a bibliographic study about the theme and are presented suggestions for the continuation of this work

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Observed deviations from traditional concepts of soil-water movement are considered in terms of fractals. A connection is made between this movement and a Brownian motion, a random and self-affine type of fractal, to account for the soil-water diffusivity function having auxiliary time dependence for unsaturated soils. The position of a given water content is directly proportional to t(n), where t is time, and exponent n for distinctly unsaturated soil is less than the traditional 0.50. As water saturation is approached, n approaches 0.50. Macroscopic fractional Brownian motion is associated with n < 0.50, but shifts to regular Brownian motion for n = 0.50.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Color texture classification is an important step in image segmentation and recognition. The color information is especially important in textures of natural scenes, such as leaves surfaces, terrains models, etc. In this paper, we propose a novel approach based on the fractal dimension for color texture analysis. The proposed approach investigates the complexity in R, G and B color channels to characterize a texture sample. We also propose to study all channels in combination, taking into consideration the correlations between them. Both these approaches use the volumetric version of the Bouligand-Minkowski Fractal Dimension method. The results show a advantage of the proposed method over other color texture analysis methods. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La geometria euclidea risulta spesso inadeguata a descrivere le forme della natura. I Frattali, oggetti interrotti e irregolari, come indica il nome stesso, sono più adatti a rappresentare la forma frastagliata delle linee costiere o altri elementi naturali. Lo strumento necessario per studiare rigorosamente i frattali sono i teoremi riguardanti la misura di Hausdorff, con i quali possono definirsi gli s-sets, dove s è la dimensione di Hausdorff. Se s non è intero, l'insieme in gioco può riconoscersi come frattale e non presenta tangenti e densità in quasi nessun punto. I frattali più classici, come gli insiemi di Cantor, Koch e Sierpinski, presentano anche la proprietà di auto-similarità e la dimensione di similitudine viene a coincidere con quella di Hausdorff. Una tecnica basata sulla dimensione frattale, detta box-counting, interviene in applicazioni bio-mediche e risulta utile per studiare le placche senili di varie specie di mammiferi tra cui l'uomo o anche per distinguere un melanoma maligno da una diversa lesione della cute.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wetting front is the zone where water invades and advances into an initially dry porous material and it plays a crucial role in solute transport through the unsaturated zone. Water is an essential part of the physiological process of all plants. Through water, necessary minerals are moved from the roots to the parts of the plants that require them. Water moves chemicals from one part of the plant to another. It is also required for photosynthesis, for metabolism and for transpiration. The leaching of chemicals by wetting fronts is influenced by two major factors, namely: the irregularity of the fronts and heterogeneity in the distribution of chemicals, both of which have been described by using fractal techniques. Soil structure can significantly modify infiltration rates and flow pathways in soils. Relations between features of soil structure and features of infiltration could be elucidated from the velocities and the structure of wetting fronts. When rainwater falls onto soil, it doesn?t just pool on surfaces. Water ?or another fluid- acts differently on porous surfaces. If the surface is permeable (porous) it seeps down through layers of soil, filling that layer to capacity. Once that layer is filled, it moves down into the next layer. In sandy soil, water moves quickly, while it moves much slower through clay soil. The movement of water through soil layers is called the the wetting front. Our research concerns the motion of a liquid into an initially dry porous medium. Our work presents a theoretical framework for studying the physical interplay between a stationary wetting front of fractal dimension D with different porous materials. The aim was to model the mass geometry interplay by using the fractal dimension D of a stationary wetting front. The plane corresponding to the image is divided in several squares (the minimum correspond to the pixel size) of size length ". We acknowledge the help of Prof. M. García Velarde and the facilities offered by the Pluri-Disciplinary Institute of the Complutense University of Madrid. We also acknowledge the help of European Community under project Multi-scale complex fluid flows and interfacial phenomena (PITN-GA-2008-214919). Thanks are also due to ERCOFTAC (PELNoT, SIG 14)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a large number of physical, biological and environmental processes interfaces with high irregular geometry appear separating media (phases) in which the heterogeneity of constituents is present. In this work the quantification of the interplay between irregular structures and surrounding heterogeneous distributions in the plane is made For a geometric set image and a mass distribution (measure) image supported in image, being image, the mass image gives account of the interplay between the geometric structure and the surrounding distribution. A computation method is developed for the estimation and corresponding scaling analysis of image, being image a fractal plane set of Minkowski dimension image and image a multifractal measure produced by random multiplicative cascades. The method is applied to natural and mathematical fractal structures in order to study the influence of both, the irregularity of the geometric structure and the heterogeneity of the distribution, in the scaling of image. Applications to the analysis and modeling of interplay of phases in environmental scenarios are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From a physical perspective, a joint experiences fracturing processes that affect the rock at both microscopic and macroscopic levels. The result is a behaviour that follows a fractal structure. In the first place, for saw-tooth roughness profiles, the use of the triadic Koch curve appears to be adequate and by means of known correlations the JRC parameter is obtained from the angle measured on the basis of the height and length of the roughnesses. Therefore, JRC remains related to the geometric pattern that defines roughness by fractal analysis. In the second place, to characterise the geometry of irregularities with softened profiles, consequently, is proposed a characterisation of the fractal dimension of the joints with a circumference arc generator that is dependent on an average contact angle with regard to the mid-plane. The correlation between the JRC and the fractal dimension of the model is established with a defined statistical ratio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los desarrollos que se dan en la geometr?a a partir de propuestas como la de B. Mandelbrot y que dan lugar al desarrollo de estructuras fractales son del inter?s para que en este trabajo de grado se pretenda abordar la visualizaci?n como un proceso que influye en el pensamiento, desde el acercamiento que se hace a la geometr?a fractal. Particularmente como los estudiantes de grado noveno entienden un objeto fractal desde la visualizaci?n del mismo, a partir de situaciones did?cticas que consideren algunas construcciones que se destacan en el contexto de la geometr?a fractal, entre las que encontramos el conjunto de Cantor, el tri?ngulo de Sierpinski y la curva de Koch. Sin dejar de lado la importancia que se le brinda a la llegada de las nuevas tecnolog?as de la informaci?n a las aulas y que en educaci?n podr?an ser generadoras de numerosas expectativas respecto al conocimiento.