904 resultados para Sensory
Resumo:
Black mouth croaker (Atrobucca nibe) is considered as a new valuable fish stock in the Oman Sea. In this study, surimi was manufactured from nonmarket size of the fish, manually and different cryoprotectant agents were added to the surimi. Finally changes in physiochemical, microbiological and sensory quality, characteristics of the surimi and kamaboko gel samples were assessed during 6 months at freezing storage (-18ºC). Surimi samples with the addition of Iranian tragacanth gum (TG), xanthan gum (XG), chitosan (CS) and whey protein concentrate (WPC) at 1% (w/w) were prepared to evaluate their impacts as a cryoprotectant on the surimi, individually. The results showed that the whiteness and lightness indexes in all surimi samples were gradually decreased during frozen storage. This trend of decreasing was more intensity in the control sample from 61.08±0.131 to 54.21±0.067 was recorded (p<0.05). Water holding capacity (WHC) in all treatments was decreased during 6 months. The lowest WHC (g/g) was obtained in the surimi without cryoprotectants and maximum WHC was measured in Tcs and Twpc samples, respectively (p<0.05). The lowest breaking force was calculated in Txg (166.00±22.627 g) and Tc (271.50±263.16 g) during 6 months at frozen storage, respectively (p<0.05), while Twpc treatment with slight variations showed the highest breaking force (p<0.05). Also, the lowest gel strength was obtained in Txg (68.22±6.740 g.cm) after 6 month of frozen storage (p<0.05). All Kamaboko surimi gels texture profile analysis parameters decreaced with increasing shelf life. This decreasing trend in the control sample was more severe. Floding results were reduced in all samples during storage (p<0.05). The best protective results probably were obtained in WPC, chitosan and commercial cryoprotectant agents, respectively due to protein stabilization of myofibrillar proteins and the protein-protein network structure, leading to the formation of surimi gel with strong textural properties during frozen conditions. The average number of surimi polygonal structures were significantly decreased (number per mm2) and their area were significantly increased (μm2) in all treatments (p<0.05). With increasing storage time, moisture, protein contents and pH were decreaced. Maximun TVB-N index was calculated in Tc (7.93±0.400 mg/100g) and Txg (7.88±0.477), respectively (p<0.05). TBRAs index was increased in all treatments during frozen storage, while this trend was reached in maximum value in Tc (p<0.05). Sensory evaluation of the fish finger quality characteristics (color, odor, texture and overall acceptability) preapare from frozen black mouth croaker surimi was decreaced during 6 month frozen storage. After the period of frozen storage the highest quality scores were measured in Twpc, Tcs and Tcc samples, respectively (p<0.05). In this study, coliform bacteria were not found in all treatments during frozen storage. The surimi sample containing chitosan showed lower mesophilic and psychrotropic bacteria (log cfu/g) than other treatments during frozen storage (p<0.05). Salt-soluble proteins extractions of all treatments were decreased during frozen storage. This decreacing trend was highest in Tcs (45.74±0.176%) and lowest in Tc treatments after 6 month of frozen storage (29.92±0.224%) (p<0.05). Although commercial cryoprotectant agents were successful in limiting the denaturation of proteins but sugar contents were not accepted for diabetics or those who disagree with the sweet taste and high calorie food. Hence, commercial cryoprotectant agents can be replaced with whey protein concentrate and chitosan at 1% level (w/w) consider that they were showed proper protection of the surimi myofibrillar proteins during storage.
Resumo:
Sensory gating is the ability of the brain to modulate its sensitivity to incoming stimuli. The N40 component of the auditory evoked potential, evaluated with the paired click paradigm, was used to probe the gating effect in rats. The physical characteris
Resumo:
Effects of different thawing method i.e. in a refrigerator, in water, at air ambient temperature and in a microwave oven on proximate, chemical (PV, TBA, FFA, TVB-N, SSP, FA), biochemical (pH, WHC,ThL), microbial (total viable, psychrotrophic, coliform, Shewanella and yeast-mould count) and sensory analysis were carried out on frozen whole Caspian sea Kutum (Rutilus frisii kutum) and Rainbow trout (Oncorhynchus mykiss) carcasses. The values of ash, protein, SSP, WHC, PUFA, PUFA/SFA. EPA+DHA/C16:0, pH, and microbial count of thawed samples decreased significantly while fat, PV, TBA, FFA, TVB-N, SFA and MUFA increased compared to the fresh fish (unfrozen) as control samples. Also, sensory evaluation all of thawed samples showed a significant (p<0.05) quality loss compared to the fresh fish as control samples. The lowest chemical and biochemical values as well as microbial growth were determined in water thawed samples. Therefore, based on this study thawing in water is most suitable for frozen whole rainbow trout.
Resumo:
Proximate composition, PH, total aerabic counts, coliform counts, appearance and taste of dried Lake Tanganyika sardine (Limnothrissa miodon and Stolothrissa tanganicae) sampled at Lusaka markets were analysed for the period July 1969 to February 1970. Water content for the dried sardine varied between 7 and l4% and oil content between 8 and 14% according to season. Flavour of the cooked sardine was scored as good to fair, which discredits the common belief that is poor in quality. Cooked fish scores correlated poorly to the oil content and bacterial counts of the dried fish.
Resumo:
A critical examination of the market quality of split, dried and smoked bream (Tilapia spp.) was chemically, bacteriologically and organoleptically conducted for the period of August 1968 to January 1969. The aim of this survey was to obtain basic information for the development of national quality standards for the commodity. Relationships of cooked meat score to pH, fish size, appearance and smell score, and water content wcre significantly correlated and responsive. Therefore, these parameters were proposed to be used as indices for the quality standards of the products.
Resumo:
Virtual assembly environment (VAE) technology has the great potential for benefiting the manufacturing applications in industry. Usability is an important aspect of the VAE. This paper presents the usability evaluation of a developed multi-sensory VAE. The evaluation is conducted by using its three attributes: (a) efficiency of use; (b) user satisfaction; and (c) reliability. These are addressed by using task completion times (TCTs), questionnaires, and human performance error rates (HPERs), respectively. A peg-in-a-hole and a Sener electronic box assembly task have been used to perform the experiments, using sixteen participants. The outcomes showed that the introduction of 3D auditory and/or visual feedback could improve the usability. They also indicated that the integrated feedback (visual plus auditory) offered better usability than either feedback used in isolation. Most participants preferred the integrated feedback to either feedback (visual or auditory) or no feedback. The participants' comments demonstrated that nonrealistic or inappropriate feedback had negative effects on the usability, and easily made them feel frustrated. The possible reasons behind the outcomes are also analysed. © 2007 ACADEMY PUBLISHER.
Resumo:
Humans have been shown to adapt to the temporal statistics of timing tasks so as to optimize the accuracy of their responses, in agreement with the predictions of Bayesian integration. This suggests that they build an internal representation of both the experimentally imposed distribution of time intervals (the prior) and of the error (the loss function). The responses of a Bayesian ideal observer depend crucially on these internal representations, which have only been previously studied for simple distributions. To study the nature of these representations we asked subjects to reproduce time intervals drawn from underlying temporal distributions of varying complexity, from uniform to highly skewed or bimodal while also varying the error mapping that determined the performance feedback. Interval reproduction times were affected by both the distribution and feedback, in good agreement with a performance-optimizing Bayesian observer and actor model. Bayesian model comparison highlighted that subjects were integrating the provided feedback and represented the experimental distribution with a smoothed approximation. A nonparametric reconstruction of the subjective priors from the data shows that they are generally in agreement with the true distributions up to third-order moments, but with systematically heavier tails. In particular, higher-order statistical features (kurtosis, multimodality) seem much harder to acquire. Our findings suggest that humans have only minor constraints on learning lower-order statistical properties of unimodal (including peaked and skewed) distributions of time intervals under the guidance of corrective feedback, and that their behavior is well explained by Bayesian decision theory.
Resumo:
Our ability to have an experience of another's pain is characteristic of empathy. Using functional imaging, we assessed brain activity while volunteers experienced a painful stimulus and compared it to that elicited when they observed a signal indicating that their loved one--present in the same room--was receiving a similar pain stimulus. Bilateral anterior insula (AI), rostral anterior cingulate cortex (ACC), brainstem, and cerebellum were activated when subjects received pain and also by a signal that a loved one experienced pain. AI and ACC activation correlated with individual empathy scores. Activity in the posterior insula/secondary somatosensory cortex, the sensorimotor cortex (SI/MI), and the caudal ACC was specific to receiving pain. Thus, a neural response in AI and rostral ACC, activated in common for "self" and "other" conditions, suggests that the neural substrate for empathic experience does not involve the entire "pain matrix." We conclude that only that part of the pain network associated with its affective qualities, but not its sensory qualities, mediates empathy.
Resumo:
Cortical neurons receive balanced excitatory and inhibitory synaptic currents. Such a balance could be established and maintained in an experience-dependent manner by synaptic plasticity at inhibitory synapses. We show that this mechanism provides an explanation for the sparse firing patterns observed in response to natural stimuli and fits well with a recently observed interaction of excitatory and inhibitory receptive field plasticity. The introduction of inhibitory plasticity in suitable recurrent networks provides a homeostatic mechanism that leads to asynchronous irregular network states. Further, it can accommodate synaptic memories with activity patterns that become indiscernible from the background state but can be reactivated by external stimuli. Our results suggest an essential role of inhibitory plasticity in the formation and maintenance of functional cortical circuitry.
Resumo:
IMPORTANCE: Forward models predict the sensory consequences of planned actions and permit discrimination of self- and non-self-elicited sensation; their impairment in schizophrenia is implied by an abnormality in behavioral force-matching and the flawed agency judgments characteristic of positive symptoms, including auditory hallucinations and delusions of control. OBJECTIVE: To assess attenuation of sensory processing by self-action in individuals with schizophrenia and its relation to current symptom severity. DESIGN, SETTING, AND PARTICIPANTS: Functional magnetic resonance imaging data were acquired while medicated individuals with schizophrenia (n = 19) and matched controls (n = 19) performed a factorially designed sensorimotor task in which the occurrence and relative timing of action and sensation were manipulated. The study took place at the neuroimaging research unit at the Institute of Cognitive Neuroscience, University College London, and the Maudsley Hospital. RESULTS: In controls, a region of secondary somatosensory cortex exhibited attenuated activation when sensation and action were synchronous compared with when the former occurred after an unexpected delay or alone. By contrast, reduced attenuation was observed in the schizophrenia group, suggesting that these individuals were unable to predict the sensory consequences of their own actions. Furthermore, failure to attenuate secondary somatosensory cortex processing was predicted by current hallucinatory severity. CONCLUSIONS AND RELEVANCE: Although comparably reduced attenuation has been reported in the verbal domain, this work implies that a more general physiologic deficit underlies positive symptoms of schizophrenia.
Resumo:
The ecological interaction of brown algae are important as these macroalgae are common and often keystone members in many benthic marine communities.This review highlights their chemical interactions,particularly with potential herbivores,but also with fouling oranganisms,with potential pathogens,with each other as gametes,and with their microenvironments when they are spores.Phlorotannins,which are phenolic compounds unique to brown algae,have been studied hesvily in many of these respects and sre highlightes here.This includes recent controversy about their roles as defences against herbivory,as well as new understanding of their roles in primary cellular functions that may,in many instances,be more important than ,and which at least have to be considered in convert with,any possible ecological functions.Brown algae have also been useful models for testing theoties about the evolution of and ecological constraints on chemical defence.Furthermore,their mocroscopic motile gametes and spores have the ability to react to their chemical environments behavirourally.
Fresh pasta enrichment with protein concentrate of tilapia: nutritional and sensory characteristics.
Resumo:
With the goal of developing and characterizing the nutritional and sensory aspects of fresh pasta supplemented with tilapia protein concentrate, four types of pasta were prepared, with inclusion of 0, 10, 20, or 30% of tilapia protein concentrate. Linear effects were observed (P < 0.01) in crude protein, total lipids, ash, carbohydrate, and caloric values; these parameters increased with increasing amounts of tilapia protein concentrate in the pasta. The concentration of Na, P, Ca, Mg, and Zn increased linearly (P < 0.01) in correlation with the increase in protein concentrate content, while Fe content decreased linearly (P < 0.01). In the sensory analysis, texture, overall impression, and the acceptance index demonstrated a cubic regression (P < 0.05), with the inclusion of 20% protein concentrate yielding the best scores. Including up to 30% of tilapia protein concentrate in pasta yields an increased nutritional value, but based on the sensory results, 20% of tilapia protein concentrate in pasta is the recommended maximum level.
Resumo:
Lee, M., Barnes, D. P., Hardy, N. (1985). Research into error recovery for sensory robots. Sensor Review, 5 (4), 194-197.
Resumo:
M.H. Lee, Q. Meng and F. Chao, 'A Content-Neutral Approach for Sensory-Motor Learning in Developmental Robotics', EpiRob'06: Sixth International Conference on Epigenetic Robotics, Paris, 55-62, 2006.
Resumo:
Lee, M., Meng, Q. (2005). Psychologically Inspired Sensory-Motor Development in Early Robot Learning. International Journal of Advanced Robotic Systems, 325-334.