974 resultados para Semilinear Wave Equation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The numerical solution of the time dependent wave equation in an unbounded domain generally leads to a truncation of this domain, which requires the introduction of an artificial boundary with associated boundary conditions. Such nonreflecting conditions ensure the equivalence between the solution of the original problem in the unbounded region and the solution inside the artificial boundary. We consider the acoustic wave equation and derive exact transparent boundary conditions that are local in time and can be directly used in explicit methods. These conditions annihilate wave harmonics up to a given order on a spherical artificial boundary, and we show how to combine the derived boundary condition with a finite difference method. The analysis is complemented by a numerical example in two spatial dimensions that illustrates the usefulness and accuracy of transparent boundary conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider the semilinear Schrodinger equation -Delta(A)u + V(x)u = Q(x)vertical bar u vertical bar(2* -2) u. Assuming that V changes sign, we establish the existence of a solution u not equal 0 in the Sobolev space H-A,V(1) + (R-N). The solution is obtained by a min-max type argument based on a topological linking. We also establish certain regularity properties of solutions for a rather general class of equations involving the operator -Delta(A).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 31B10

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate the application of time-reversed electromagnetic wave propagation to transmit energy in a wireless power transmission system. “Time reversal” is a signal focusing method that exploits the time reversal invariance of the lossless wave equation to direct signals onto a single point inside a complex scattering environment. In this work, we explore the properties of time reversed microwave pulses in a low-loss ray-chaotic chamber. We measure the spatial profile of the collapsing wavefront around the target antenna, and demonstrate that time reversal can be used to transfer energy to a receiver in motion. We demonstrate how nonlinear elements can be controlled to selectively focus on one target out of a group. Finally, we discuss the design of a rectenna for use in a time reversal system. We explore the implication of these results, and how they may be applied in future technologies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many optical networks are limited in speed and processing capability due to the necessity for the optical signal to be converted to an electrical signal and back again. In addition, electronically manipulated interconnects in an otherwise optical network lead to overly complicated systems. Optical spatial solitons are optical beams that propagate without spatial divergence. They are capable of phase dependent interactions, and have therefore been extensively researched as suitable all optical interconnects for over 20 years. However, they require additional external components, initially high voltage power sources were required, several years later, high power background illumination had replaced the high voltage. However, these additional components have always remained as the greatest hurdle in realising the applications of the interactions of spatial optical solitons as all optical interconnects. Recently however, self-focusing was observed in an otherwise self-defocusing photorefractive crystal. This observation raises the possibility of the formation of soliton-like fields in unbiased self-defocusing media, without the need for an applied electrical field or background illumination. This thesis will present an examination of the possibility of the formation of soliton-like low divergence fields in unbiased self-defocusing photorefractive media. The optimal incident beam and photorefractive media parameters for the formation of these fields will be presented, together with an analytical and numerical study of the effect of these parameters. In addition, preliminary examination of the interactions of two of these fields will be presented. In order to complete an analytical examination of the field propagating through the photorefractive medium, the spatial profile of the beam after propagation through the medium was determined. For a low power solution, it was found that an incident Gaussian field maintains its Gaussian profile as it propagates. This allowed the beam at all times to be described by an individual complex beam parameter, while also allowing simple analytical solutions to the appropriate wave equation. An analytical model was developed to describe the effect of the photorefractive medium on the Gaussian beam. Using this model, expressions for the required intensity dependent change in both the real and imaginary components of the refractive index were found. Numerical investigation showed that under certain conditions, a low powered Gaussian field could propagate in self-defocusing photorefractive media with divergence of approximately 0.1 % per metre. An investigation into the parameters of a Ce:BaTiO3 crystal showed that the intensity dependent absorption is wavelength dependent, and can in fact transition to intensity dependent transparency. Thus, with careful wavelength selection, the required intensity dependent change in both the real and imaginary components of the refractive index for the formation of a low divergence Gaussian field are physically realisable. A theoretical model incorporating the dependence of the change in real and imaginary components of the refractive index on propagation distance was developed. Analytical and numerical results from this model are congruent with the results from the previous model, showing low divergence fields with divergence less than 0.003 % over the propagation length of the photorefractive medium. In addition, this approach also confirmed the previously mentioned self-focusing effect of the self-defocusing media, and provided an analogy to a negative index GRIN lens with an intensity dependent focal length. Experimental results supported the findings of the numerical analysis. Two low divergence fields were found to possess the ability to interact in a Ce:BaTiO3 crystal in a soliton-like fashion. The strength of these interactions was found to be dependent on the degree of divergence of the individual beams. This research found that low-divergence fields are possible in unbiased self-defocusing photorefractive media, and that soliton-like interactions between two of these fields are possible. However, in order for these types of fields to be used in future all optical interconnects, the manipulation of these interactions, together with the ability for these fields to guide a second beam at a different wavelength, must be investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stability analyses have been widely used to better understand the mechanism of traffic jam formation. In this paper, we consider the impact of cooperative systems (a.k.a. connected vehicles) on traffic dynamics and, more precisely, on flow stability. Cooperative systems are emerging technologies enabling communication between vehicles and/or with the infrastructure. In a distributed communication framework, equipped vehicles are able to send and receive information to/from other equipped vehicles. Here, the effects of cooperative traffic are modeled through a general bilateral multianticipative car-following law that improves cooperative drivers' perception of their surrounding traffic conditions within a given communication range. Linear stability analyses are performed for a broad class of car-following models. They point out different stability conditions in both multianticipative and nonmultianticipative situations. To better understand what happens in unstable conditions, information on the shock wave structure is studied in the weakly nonlinear regime by the mean of the reductive perturbation method. The shock wave equation is obtained for generic car-following models by deriving the Korteweg de Vries equations. We then derive traffic-state-dependent conditions for the sign of the solitary wave (soliton) amplitude. This analytical result is verified through simulations. Simulation results confirm the validity of the speed estimate. The variation of the soliton amplitude as a function of the communication range is provided. The performed linear and weakly nonlinear analyses help justify the potential benefits of vehicle-integrated communication systems and provide new insights supporting the future implementation of cooperative systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Anisotropic gaussian beams are obtained as exact solutions to the parabolic wave equation. These beams have a quadratic phase front whose principal radii of curvature are non-degenerate everywhere. It is shown that, for the lowest order beams, there exists a plane normal to the beam axis where the intensity distribution is rotationally symmetric about the beam axis. A possible application of these beams as normal modes of laser cavities with astigmatic mirrors is noted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Given a real-valued function on R-n we study the problem of recovering the function from its spherical means over spheres centered on a hyperplane. An old paper of Bukhgeim and Kardakov derived an inversion formula for the odd n case with great simplicity and economy. We apply their method to derive an inversion formula for the even n case. A feature of our inversion formula, for the even n case, is that it does not require the Fourier transform of the mean values or the use of the Hilbert transform, unlike the previously known inversion formulas for the even n case. Along the way, we extend the isometry identity of Bukhgeim and Kardakov for odd n, for solutions of the wave equation, to the even n case.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present paper investigates the nature of the fluid flow when a spheroid is suspended in an infinitely extending elastico-viscous fluid defined by the constitutive equations given by Oldroyd or Rivlin and Ericksen, and is made to perform small amplitude oscillations along its axis. The solution of the vector wave equation is expressed in terms of the solution of the corresponding scalar wave equation, without the use of Heine's function or spheroidal wave functions. Two special cases (i) a sphere and (ii) a spheroid of small ellipticity, are studied in detail.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is proposed that the mathematical analysis of the Alfven wave equation in inhomogeneous magnetic fields which explain the resonance absorption of Alfven surface waves near a resonant layer can also be used to show that the magnetic reconnection process can arise near the zero-frequency resonant layer driven by VLF Alfven surface waves. It is suggested that the associated phenomena of resonant absorption and magnetic reconnection can account for the recent observations of intense magnetic activity in the long-period geomagnetic micropulsation range, at cusp latitudes, during flux transfer events.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A comprehensive exact treatment of free surface flows governed by shallow water equations (in sigma variables) is given. Several new families of exact solutions of the governing PDEs are found and are shown to embed the well-known self-similar or traveling wave solutions which themselves are governed by reduced ODEs. The classes of solutions found here are explicit in contrast to those found earlier in an implicit form. The height of the free surface for each family of solutions is found explicitly. For the traveling or simple wave, the free surface is governed by a nonlinear wave equation, but is arbitrary otherwise. For other types of solutions, the height of the free surface is constant either on lines of constant acceleration or on lines of constant speed; in another case, the free surface is a horizontal plane while the flow underneath is a sine wave. The existence of simple waves on shear flows is analytically proved. The interaction of large amplitude progressive waves with shear flow is also studied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is shown that, although the mathematical analysis of the Alfven-wave equation does not show any variation at non-zero or zero singular points, the role of surface waves in the physical mechanism of resonant absorption of Alfven waves is very different at these points. This difference becomes even greater when resistivity is taken into account. At the neutral point the zero-frequency surface waves that are symmetric surface modes of the structured neutral layer couple to the tearing mode instability of the layer. The importance of this study for the energy balance in tearing modes and the association of surface waves with driven magnetic reconnection is also pointed out.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modeling of wave propagation in hoses, unlike in rigid pipes or waveguides, introduces a coupling between the inside medium, the hose wall, and the outside medium, This alters the axial wave number and thence the corresponding effective speed of sound inside the hose resulting in sound radiation into the outside medium, also called the breakout or shell noise, The existing literature on the subject is such that a hose cannot be integrated into the,whole piping system made up of sections of hoses, pipes, and mufflers to predict the acoustical performance in terms of transmission loss (TL), The present paper seeks to fill this gap, Three one-dimensional coupled wave equations are written to account for the presence of a yielding wall with a finite lumped transverse impedance of the hose material, The resulting wave equation can readily be reduced to a transfer matrix form using an effective wave number for a moving medium in a hose section, Incorporating the effect of fluid loading due to the outside medium also allows prediction of the transverse TL and the breakout noise, Axial TL and transverse TL have been combined into net TL needed by designers, Predictions of the axial as well as transverse TL are shown to compare well with those of a rigorous 3-D analysis using only one-hundredth of the computation time, Finally, results of some parametric studies are reported for engineers involved in the acoustical design of hoses. (C) 1996 Institute of Noise Control Engineering.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, by using the Hilbert Uniqueness Method (HUM), we study the exact controllability problem described by the wave equation in a three-dimensional horizontal domain bounded at the bottom by a smooth wall and at the top by a rough wall. The latter is assumed to consist in a plane wall covered with periodically distributed asperities whose size depends on a small parameter epsilon > 0, and with a fixed height. Our aim is to obtain the exact controllability for the homogenized equation. In the process, we study the asymptotic analysis of wave equation in two setups, namely solution by standard weak formulation and solution by transposition method.