993 resultados para Secretory activity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The work presented in this thesis was undertaken to increase understanding of the intracellular mechanisms regulating acid secretion by gastric parietal cells. Investigation of the effects of protein kinase C on secretory activity induced by a variety of agents was a major objective. A further aim was to establish the sites at which epidermal growth factor (EGF) acts to stimulate prostaglandin E2 (PGE2) production and to inhibit acid secretion. These investigations were carried out by using the HGT-1 human gastric cancer cell line and freshly isolated rat parietal cells. In HGT-1 cells, the cyclic AMP response to histamine and to truncated glucagon-like peptide 1 (TGLP-1) was reduced when protein kinase C was activated by 12-0-tetradecanoylphorbol 13-acetate (TPA). Receptor-binding studies and experiments in which cyclic AMP production in HGT-1 cells was stimulated by gastric inhibitory polypeptide, cholera toxin and forskolin suggested that the effect of TPA was mediated by uncoupling of the histamine H2 receptor from the guanine nucleotide regulatory protein Gs, possibly by phosphorylation of the receptor. An involvement of protein kinase C α in this effect was suggested because an antibody to this isoform specifically prevented the inhibitory effects of TPA on histamine-stimulated adenylate cyclase activity in a membrane fraction prepared from HGT-1 cells. Carbachol-stimulated secretory activity in parietal cells was specifically inhibited by Ro 31-8220, a bisindolylmaleimide inhibitor of protein kinase C. Thus protein kinase C may play a role in the activation of the secretory response to carbachol. In parietal cells prelabelled with [3H]-arachidonic acid or [3H]myristic acid, EGF did not affect [3H]-fatty acid or [3H] - diacylglycerol content. No evidence for effects of EGF on phosphatidylinositol glycan-specific phospholipase C, phospholipase A2 or on low Km cyclic AMP phosphodiesterase activities were found.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study concerns the production and action of the local mediators nitric oxide (NO) and prostaglandin E2 (PGE2) in the rat gastric mucosa. The major objectives were: (i) to determine which mucosal cell type(s) contained NO synthase activity, (ii) to establish the functional role(s) of NO in the gastric mucosa and (iii) to investigate regulation of gastric PGE2 production. Gastric mucosal cells were isolated by pronase digestion coupled with intermittent calcium chelation and were separated by either density-gradient centrifugation or by counterflow elutriation. The distribution of Ca2+ -dependent NO synthase activity, measured via the conversion of [14C]-L-arginine to [14C]-L- citrulline, paralleled the distribution of mucous cells in elutriated fractions. Pre-treatment of rats with lipopolysaccharide caused the induction of Ca2+ -independent NO synthase in the elutriator fractions enriched with mucous cells. Incubation of isolated cells with the NO donor isosorbide dinitrate (ISDN) produced a concentration-dependent increase in the guanosine 3',-5'-cyclic monophosphate (cGMP) content which was accompanied by a concentration-dependent increase in release of immunoreactive mucin. Intragastric administration of ISDN of dibutyryl cGMP in vivo increased the thickness of the mucus layer overlying the gastric mucosa. The NO donor S-nitroso-N-acetylpenicillamine (SNAP) produced a concentration-dependent inhibition (IC50 247 μM) of histamine-stimulated aminopyrine accumulation, a measure of secretory activity, in cell suspensions containing > 80% parietal cells. SNAP increased the cGMP content of the suspension but did not decrease cellular viability, glucose oxidation or adenosine 3',5'-cyclic monophosphate content. The inhibitory effect of SNAP was observed in permeabilised cells stimulated with ATP and was stereospecifically blocked by preincubation with Rp-8-bromoguanosine 3'-5'-monophosphorothioate, which inhibits activation of cGMP-dependent protein kinase. Stimulation of PGE2 release by bradykinin in a low density cell fraction, enriched with parietal cells and devoid of vascular endothelial cells and macrophages, involved a bradykinin B1 receptor. In summary, NO synthase activity is probably present in gastric mucous epithelial cells. NO may promote mucus secretion by elevation of cGMP. NO donors inhibit acid secretion at a specific site and their action may involve cGMP. The bradykinin B1 receptor is involved with PGE2 production in the gastric mucosa.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BALB/c mice were immunized intragastrically with human sperm. Cells from the Peyer's patches and spleens of the immunized mice were for the preparation of hybridomas secreting antisperm monoclonal IgA (mcIgA). The specific ratio of IgA-secreting cells in Peyer's patches was much higher than that in spleen. The binding site on human sperm of 9 of 19 mcIgA was in the post-acrosomal region using an immunofluorescent assay. Two of eight selected mcIgA caused strong human sperm agglutination and three of them produced significant inhibition of mouse in vitro fertilization. No mcIgA tested caused obvious human sperm immobilization or inhibited mouse in vivo fertilization. In vitro assembly of selected mcIgA in ascites with mouse secretory component (SC) caused no significant changes in effects on sperm function and in vitro fertilization. By use of Western blotting, dimer or higher polymers were demonstrated in all selected mcIgAs and corresponding protein antigens in 6 of 8 selected mcIgAs. These results suggest that human sperm function may be inhibited and fertilization rate reduced by specific secretory IgA to human sperm and that secretory immunity to protein antigens of human sperm could be induced by intragastrointestinal immunization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Secretory Leukocyte Protease Inhibitor (SLPI) is a serine protease inhibitor produced by epithelial and myeloid cells with anti-inflammatory properties. Research has shown that SLPI exerts its anti-inflammatory activity by directly binding to NF-κB DNA binding sites and, in so doing, prevents binding and subsequent transcription of proinflammatory gene expression. In the current study, we demonstrate that SLPI can inhibit TNF-α-induced apoptosis in U937 cells and peripheral blood monocytes. Specifically, SLPI inhibits TNF-α-induced caspase-3 activation and DNA degradation associated with apoptosis. We go on to show that this ability of SLPI to inhibit apoptosis is not dependent on its antiprotease activity as antiprotease deficient variants of SLPI can also inhibit TNF-α-induced apoptosis. This reduction in monocyte apoptosis may preserve monocyte function during inflammation resolution and promote infection clearance at mucosal sites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Secretory leukocyte protease inhibitor (SLPI) is an important respiratory tract host defense protein, which is proteolytically inactivated by excessive neutrophil elastase (NE) during chronic Pseudomonas infection in the cystic fibrosis (CF) lung. We generated two putative NE-resistant variants of SLPI by site-directed mutagenesis, SLPI-A16G and SLPI-S15G-A16G, with a view to improving SLPI’s proteolytic stability. Both variants showed enhanced resistance to degradation in the presence of excess NE as well as CF patient sputum compared with SLPI-wild type (SLPI-WT). The ability of both variants to bind bacterial lipopolysaccharides and interact with nuclear factor-κB DNA binding sites was also preserved. Finally, we demonstrate increased anti-inflammatory activity of the SLPI-A16G protein compared with SLPI-WT in a murine model of pulmonary Pseudomonas infection. This study demonstrates the increased stability of these SLPI variants compared with SLPI-WT and their therapeutic potential as a putative anti-inflammatory treatment for CF lung disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study examined relationships among physical activity, body fat and salivary immonoglobulin A (sIgA) levels in adolescent children of Southern Ontario. Gender differences on these factors were also assessed. Sixty-one grade-five students (10-1 lyrs), males (n=29) and females (n=31), who had not received a flu vaccination in the past 12 months, participated in the study. They were assessed for: aerobic power (20-m shuttle run), relative body fat (bioelectrical impedance analysis), sIgA, sIgA/albumin ratio, and salivary Cortisol. Each subject completed the Habitual Activity Estimation Scale and the Participation Questioimaire. Students wore a pedometer for 48h to estimate their average total distance traveled per day. The results show 40% of the children were over 25% body fat and 50% of them spend less than five hours per day in any physical activities. Salivary IgA was not related to salivary Cortisol, physical activity, fitness level or body fat in this age group. There were no gender differences in sIgA and Cortisol levels. Boys had a significantly higher aerobic power and daily distance traveled, but reported similar organized and fi-ee time activity participation levels as the girls. The test-retest reproducibility for salivary Cortisol was 0.663 (p<0.01), while long term sIgA and sIgA/albumin ratio reproducibility was non-significant for repeated measurements taken after six weeks. It was found that salivary IgA has not been shovm to be a stable measure in children, in contrast to the results found in the literatiu-e that tested adults and the relationship with physical activity, fitness level and body fat.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Few reported inhibitors of secretory phospholipase A(2) enzymes inhibit the IIa human isoform (hnpsPLA(2)-IIa) noncovalently at submicromolar concentrations. Herein, the simple chiral precursor D-tyrosine was derivastised to give a series of potent new inhibitors of hnpsPLA(2)-IIa. A 2.2-Angstrom crystal structure shows an inhibitor bound in the active site of the enzyme, chelated to a Ca2+ ion through carboxylate and amide oxygen atoms, H bonded through an amide NH group to His48, with multiple hydrophobic contacts and a T-shaped aromatic-group-His6 interaction. Antiinflammatory activity is also demonstrated for two compounds administered orally to rats.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of fibrosis in the chronically hypertensive heart is associated with infiltration of inflammatory cells and cardiac hypertrophy. In this study, an inhibitor of the proinflammatory enzyme, group IIA human secretory phospholipase A(2) (sPLA(2)-IIA), has been found to prevent collagen deposition as an important component of cardiovascular remodeling in a rat model of developing chronic hypertension. Daily treatment of young male spontaneously hypertensive rats (SHR) with an sPLA2-IIA inhibitor (KH064, 5-(4-benzyloxyphenyl)-4S-(phenyl-heptanoylamino)-pentanoic acid, 5 mg/kg/day p.o.) prevented increases in the content of perivascular,(SHR 20.6 +/- 0.9%, n = 5; SHR+KH064 14.0 +/- 1.2%, n = 5) and interstitial (SHR 7.9 +/- 0.3%, n = 6; SHR+KH064 5.4 +/- 0.7%, n = 6) collagen in the left ventricle of rat hearts, but did not affect numbers of infiltrating monocytes/macrophages, left ventricular hypertrophy (SHR 2.88 +/- 0.08, n = 12; SHR+KH064 3.09 +/- 0.08 mg/g body weight, n = 9), increased systolic blood pressure, or thoracic aortic responses. This selective antifibrotic activity suggests that sPLA2-IIA may have an important but specific role in cardiac fibrosis, and that its inhibitors could be useful in dissecting molecular pathways leading to fibrotic conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Secretory clusterin (sCLU) is a stress-activated, cytoprotective chaperone that confers broad-spectrum cancer treatment resistance, and its targeted inhibitor (OGX-011) is currently in phase II trials for prostate, lung, and breast cancer. However, the molecular mechanisms by which sCLU inhibits treatment-induced apoptosis in prostate cancer remain incompletely defined. We report that sCLU increases NF-κB nuclear translocation and transcriptional activity by serving as a ubiquitin-binding protein that enhances COMMD1 and I-κB proteasomal degradation by interacting with members of the SCF-βTrCP E3 ligase family. Knockdown of sCLU in prostate cancer cells stabilizes COMMD1 and I-κB, thereby sequestrating NF-κB in the cytoplasm and decreasing NF-κB transcriptional activity. Comparative microarray profiling of sCLU-overexpressing and sCLU-knockdown prostate cancer cells confirmed that the expression of many NF-κB–regulated genes positively correlates with sCLU levels. We propose that elevated levels of sCLU promote prostate cancer cell survival by facilitating degradation of COMMD1 and I-κB, thereby activating the canonical NF-κB pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The migration of three human prostate tumor epithelial cell lines (TSU-pr1, PC-3, DU-145) in response to secreted protein from a human prostate stromal cell line was investigated by using the modified blind-well Boyden chamber assay. Migrated cells were quantified by spectrophotometrically measuring the concentration of crystal violet stain extracted from their nuclei. Cell number was correlated linearly with the concentration of extracted crystal violet stain. All three tumor cell lines showed intrinsic migratory ability in the absence of chemoattractants, such that approximately 1-7% of plated cells migrated across the filter of the Boyden chambers during a 5-h incubation period. Prostate tumor cell migration was significantly enhanced (3-13-fold) in response to stromal cell secretory protein in a dose-dependent manner, whereas bovine serum albumin had no effect on stimulating tumor cell migration. Immunoprecipitation of the stromal cell secreted protein with a nerve growth factor antibody partially and significantly reduced its stimulatory activity for tumor cell migration. A Zigmond-Hirsch matrix assay of tumor cell migration in response to various concentration gradients of stromal cell secreted protein demonstrated both chemotaxis and chemokinesis by all three cell lines. These results are consistent with the stromal cell secretory protein stimulation of chemokinetic tumor cell migration through the capsule of the prostate. Outside of the prostate gland metastasis of tumor cells may occur by chemotaxis to preferential sites containing chemoattractants similar to or related to maintenance factors that can substitute for components of stromal cell secretory protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IgA is an important mucosal antibody that can neutralize mucosal pathogens by either preventing attachment to epithelia (immune exclusion) or alternatively inhibit intraepithelial replication following transcytosis by the polymeric immunoglobulin receptor (pIgR). Chlamydia trachomatis is a major human pathogen that initially targets the endocervical or urethral epithelium in women and men, respectively. As both tissues contain abundant SIgA we assessed the protection afforded by IgA targeting different chlamydial antigens expressed during the extra and intraepithelial stages of infection. We developed an in vitro model utilizing polarizing cells expressing the murine pIgR together with antigen-specific mouse IgA, and an in vivo model utilizing pIgR-/- mice. SIgA targeting the extraepithelial chlamydial antigen, the major outer membrane protein (MOMP), significantly reduced infection in vitro by 24 % and in vivo by 44 %. Conversely, pIgR-mediated delivery of IgA targeting the intraepithelial inclusion membrane protein A (IncA) bound to the inclusion but did not reduce infection in vitro or in vivo. Similarly, intraepithelial IgA targeting the secreted protease Chlamydia protease-like activity factor (CPAF) also failed to reduce infection. Together, these data suggest the importance of pIgR-mediated delivery of IgA targeting extra but not intraepithelial chlamydial antigens for protection against a genital tract infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diversity of functions of eukaryotic cells is preserved by enclosing different enzymatic activities into membrane-bound organelles. Separation of exocytic proteins from those which remain in the endoplasmic reticulum (ER) casts the foundation for correct compartmentalization. The secretory pathway, starting from the ER membrane, operates by the aid of cytosolic coat proteins (COPs). In anterograde transport, polymerization of the COPII coat on the ER membrane is essential for the ER exit of proteins. Polymerization of the COPI coatomer on the cis-Golgi membrane functions for the retrieval of proteins from the Golgi for repeated use in the ER. The COPII coat is formed by essential proteins; Sec13/31p and Sec23/24p have been thought to be indispensable for the ER exit of all exocytic proteins. However, we found that functional Sec13p was not required for the ER exit of yeast endogenous glycoprotein Hsp150 in the yeast Saccharomyces cerevisiae. Hsp150 turned out to be an ATP phosphatase. ATP hydrolysis by a Walker motif located in the C-terminal domain of Hsp150 was an active mediator for the Sec13p and Sec24p independent ER exit. Our results suggest that in yeast cells a fast track transport route operates in parallel with the previously described cisternal maturation route of the Golgi. The fast track is used by Hsp150 with the aid of its C-terminal ATPase activity at the ER-exit. Hsp150 is matured with a half time of less than one minute. The cisternal maturation track is several-fold slower and used by other exocytic proteins studied so far. Operative COPI coat is needed for ER exit by a subset of proteins but not by Hsp150. We located a second active determinant to the Hsp150 polypeptide s N-terminal portion that guided also heterologous fusion proteins out of the ER in COPII coated vesicles under non-functional COPI conditions for several hours. Our data indicate that ER exit is a selective, receptor-mediated event, not a bulk flow. Furthermore, it suggests the existence of another retrieval pathway for essential reusable components, besides the COPI-operated retrotransport route. Additional experiments suggest that activation of the COPI primer, ADP ribosylation factor (ARF), is essential also for Hsp150 transport. Moreover, it seemed that a subset of proteins directly needed activated ARF in the anterograde transport to complete the ER exit. Our results indicate that coat structures and transport routes are more variable than it has been imagined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uroguanylin, guanylin, and lymphoguanylin are small peptides that activate renal and intestinal receptor guanylate cyclases (GC). They are structurally similar to bacterial heat-stable enterotoxins (ST) that cause secretory diarrhea. Uroguanylin, guanylin, and ST elicit natriuresis, kaliuresis, and diuresis by direct actions on kidney GC receptors. A 3,762-bp cDNA characterizing a uroguanylin/guanylin/ST receptor was isolated from opossum kidney (OK) cell RNA/cDNA. This kidney cDNA (OK-GC) encodes a mature protein containing 1,049 residues sharing 72.4�75.8% identity with rat, human, and porcine forms of intestinal GC-C receptors. COS or HEK-293 cells expressing OK-GC receptor protein were activated by uroguanylin, guanylin, or ST13 peptides. The 3.8-kb OK-GC mRNA transcript is most abundant in the kidney cortex and intestinal mucosa, with lower mRNA levels observed in urinary bladder, adrenal gland, and myocardium and with no detectable transcripts in skin or stomach mucosa. We propose that OK-GC receptor GC participates in a renal mechanism of action for uroguanylin and/or guanylin in the physiological regulation of urinary sodium, potassium, and water excretion. This renal tubular receptor GC may be a target for circulating uroguanylin in an endocrine link between the intestine and kidney and/or participate in an intrarenal paracrine mechanism for regulation of kidney function via the intracellular second messenger, cGMP.