997 resultados para Seawater neutralisation, Red mud, Reversion, Tricalcium aluminate hexahydrate, Hydrotalcite
Resumo:
Two water samples and two sediment samples taken in 1965 by the R. V. "Meteor" in the area of the hot salt brine of the Atlantis II-Deep were chemically investigated, and in addition the sediment samples were subjected to X-ray and optical analysis. The investigation of the sulfur-isotope-ratios showed the same values for all water samples. This information combined with the Ca-sulfate solubility data leads us to conclude that, for the most part, the sulfate content of the salt brine resulted from mixing along the boundary with the normal seawater. In this boundary area gypsum or anhydrite is formed which sinks down to the deeper layers of the salt brine where it is redisolved when the water becomes undersaturated. In the laboratory, formation of CaS04 precipitate resulted from both the reheating of the water sample from the uppermost zone of the salt brine to the in-situ-temperature as well as by the mixing of the water sample with normal Red Sea water. The iron and manganese delivered by the hot spring is separated within the area of the salt brine by their different redox-potentials. Iron is sedimented to a high amount within the salt brine, while, as evidenced by its small amounts in all sediment samples, the more easily reducible manganese is apparently carried out of the area before sedimentation can take place. The very good layering of the salt brine may be the result of the rough bottom topography with its several progressively higher levels allowing step-like enlargements of the surface areas of each successive layer. Each enlargement results in larger boundary areas along which more effective heat transfer and mixing with the next layer is possible. In the sediment samples up to 37.18% Fe is found, mostly bound as very poorly crystallized iron hydroxide. Pyrite is present in only very small amounts. We assume that the copper is bound mostly as sulfide, while the zinc is most likely present in an other form. The sulfur-isotope-investigations indicate that the sulfur in the sediment, bound as pyrite and sulfides, is not a result of bacterical sulfate-reduction in the iron-rich mud of the Atlantis II-Deep, but must have been brought up with the hot brine.
Resumo:
Piston cores from the continental margin off Nova Scotia show up to four discrete intervals of "brick-red sandy mud", which are up to 20 cm thick. The ages of these intervals are bracketed by several radiocarbon dates, and three fall in the range 12.5-14.1 ka (radiocarbon years with -0.4 kyr reservoir correction). The youngest dates from ~10.4 ka, placing it within the Younger Dryas. The distribution of the beds and their petrographic character indicate a source in the Gulf of Saint Lawrence. The grain size of these beds suggests that they comprise a coarse component transported by ice rafting that diminishes distally and a fine component that represents suspension fallout from a surface plume and resulting nepheloid layers. Graded brick-red beds in some cores were probably redeposited from turbidity currents. The lowermost bed on the Laurentian Fan and East Scotian Rise is immediately overlain by a carbonate-rich interval that can be identified all around the margin of the Grand Banks. This interval is correlated with detrital carbonate bed DC-1 in the Labrador Sea and Heinrich event H1 in the North Atlantic. The sequential occurrence of the two beds suggests that they may be a response to the same trigger, probably sea level rise, but that the Gulf of Saint Lawrence source was more easily destabilized.
Resumo:
In this study we investigated the relations between community calcification of an entire coral reef in the northern Red Sea and annual changes in temperature, aragonite saturation and nutrient loading over a two year period. Summer (April-October) and winter (November-March) average calcification rates varied between 60 ± 20 and 30 ± 20 mmol·m-2·d-1, respectively. In general, calcification increased with temperature and aragonite saturation state of reef water with an apparent effect of nutrients, which is in agreement with most laboratory studies and in situ measurements of single coral growth rates. The calcification rates we measured in the reef correlated remarkably well with precipitation rates of inorganic aragonite calculated for the same temperature and degree of saturation ranges using empirical equations from the literature. This is a very significant finding considering that only a minute portion of reef calcification is inorganic. Hence, these relations could be used to predict the response of coral reefs to ocean acidification and warming.
Resumo:
Two species of Antarctic fish were stressed by moving them from seawater at -1 degrees C to seawater at 10 degrees C and holding them for a period of 10 min. The active cryopelagic species Pagothenia borchgrevinki maintained heart rate while in the benthic species Trematomus bernacchii there was an increase in heart rate. Blood pressure did not change in either species. Both species released catecholamines into the circulation as a consequence of the stress. P. borchgrevinki released the greater amounts, having mean plasma concentrations of 177 +/- 54 nmol.l(-1) noradrenaline and 263 +/- 131 nmol.l(-1) adrenaline at 10 min. Pla.sma noradrenaline concentrations rose to 47 +/- 14 nmol.l(-1) and adrenaline to 73 +/- 28 nmol.l(-1) in T. bernacchii. Blood from P. borchgrevinki was tonometered in the presence of isoprenaline. A fall in extracellular pH suggests the presence of a Na+/H+ antiporter on the red cell membrane, the first demonstration of this in an Antarctic fish. Treatment with the beta-adrenergic antagonist drug sotalol inhibited swelling of red blood cells taken from temperature-stressed P. borchgrevinki, suggesting that the antiporter responds to endogenous catecholamines.
Resumo:
The bottom of the Red Sea harbors over 25 deep hypersaline anoxic basins that are geochemically distinct and characterized by vertical gradients of extreme physicochemical conditions. Because of strong changes in density, particulate and microbial debris get entrapped in the brine-seawater interface (BSI), resulting in increased dissolved organic carbon, reduced dissolved oxygen toward the brines and enhanced microbial activities in the BSI. These features coupled with the deep-sea prevalence of ammonia-oxidizing archaea (AOA) in the global ocean make the BSI a suitable environment for studying the osmotic adaptations and ecology of these important players in the marine nitrogen cycle. Using phylogenomic-based approaches, we show that the local archaeal community of five different BSI habitats (with up to 18.2% salinity) is composed mostly of a single, highly abundant Nitrosopumilus-like phylotype that is phylogenetically distinct from the bathypelagic thaumarchaea; ammonia-oxidizing bacteria were absent. The composite genome of this novel Nitrosopumilus-like subpopulation (RSA3) co-assembled from multiple single-cell amplified genomes (SAGs) from one such BSI habitat further revealed that it shares [sim]54% of its predicted genomic inventory with sequenced Nitrosopumilus species. RSA3 also carries several, albeit variable gene sets that further illuminate the phylogenetic diversity and metabolic plasticity of this genus. Specifically, it encodes for a putative proline-glutamate 'switch' with a potential role in osmotolerance and indirect impact on carbon and energy flows. Metagenomic fragment recruitment analyses against the composite RSA3 genome, Nitrosopumilus maritimus, and SAGs of mesopelagic thaumarchaea also reiterate the divergence of the BSI genotypes from other AOA.
Resumo:
The photoreceptor phytochrome B (phyB) interconverts between the biologically active Pfr (λmax = 730 nm) and inactive Pr (λmax = 660 nm) forms in a red/far-red-dependent fashion and regulates, as molecular switch, many aspects of light-dependent development in Arabidopsis thaliana. phyB signaling is launched by the biologically active Pfr conformer and mediated by specific protein-protein interactions between phyB Pfr and its downstream regulatory partners, whereas conversion of Pfr to Pr terminates signaling. Here, we provide evidence that phyB is phosphorylated in planta at Ser-86 located in the N-terminal domain of the photoreceptor. Analysis of phyB-9 transgenic plants expressing phospho-mimic and nonphosphorylatable phyB-yellow fluorescent protein (YFP) fusions demonstrated that phosphorylation of Ser-86 negatively regulates all physiological responses tested. The Ser86Asp and Ser86Ala substitutions do not affect stability, photoconversion, and spectral properties of the photoreceptor, but light-independent relaxation of the phyB(Ser86Asp) Pfr into Pr, also termed dark reversion, is strongly enhanced both in vivo and in vitro. Faster dark reversion attenuates red light-induced nuclear import and interaction of phyB(Ser86Asp)-YFP Pfr with the negative regulator PHYTOCHROME INTERACTING FACTOR3 compared with phyB-green fluorescent protein. These data suggest that accelerated inactivation of the photoreceptor phyB via phosphorylation of Ser-86 represents a new paradigm for modulating phytochrome-controlled signaling.
Resumo:
A collection of 24 seawaters from various worldwide locations and differing depth was culled to measure their chlorine isotopic composition (delta(37)Cl). These samples cover all the oceans and large seas: Atlantic, Pacific, Indian and Antarctic oceans, Mediterranean and Red seas. This collection includes nine seawaters from three depth profiles down to 4560 mbsl. The standard deviation (2sigma) of the delta(37)Cl of this collection is +/-0.08 parts per thousand, which is in fact as large as our precision of measurement ( +/- 0.10 parts per thousand). Thus, within error, oceanic waters seem to be an homogeneous reservoir. According to our results, any seawater could be representative of Standard Mean Ocean Chloride (SMOC) and could be used as a reference standard. An extended international cross-calibration over a large range of delta(37)Cl has been completed. For this purpose, geological fluid samples of various chemical compositions and a manufactured CH3Cl gas sample, with delta(37)Cl from about -6 parts per thousand to +6 parts per thousand have been compared. Data were collected by gas source isotope ratio mass spectrometry (IRMS) at the Paris, Reading and Utrecht laboratories and by thermal ionization mass spectrometry (TIMS) at the Leeds laboratory. Comparison of IRMS values over the range -5.3 parts per thousand to +1.4 parts per thousand plots on the Y=X line, showing a very good agreement between the three laboratories. On 11 samples, the trend line between Paris and Reading Universities is: delta(37)Cl(Reading)= (1.007 +/- 0.009)delta(37)Cl(Paris) - (0.040 +/- 0.025), with a correlation coefficient: R-2 = 0.999. TIMS values from Leeds University have been compared to IRMS values from Paris University over the range -3.0 parts per thousand to +6.0 parts per thousand. On six samples, the agreement between these two laboratories, using different techniques is good: delta(37)Cl(Leeds)=(1.052 +/- 0.038)delta(37)Cl(Paris) + (0.058 +/- 0.099), with a correlation coefficient: R-2 = 0.995. The present study completes a previous cross-calibration between the Leeds and Reading laboratories to compare TIMS and IRMS results (Anal. Chem. 72 (2000) 2261). Both studies allow a comparison of IRMS and TIMS techniques between delta(37)Cl values from -4.4 parts per thousand to +6.0 parts per thousand and show a good agreement: delta(37)Cl(TIMS)=(1.039 +/- 0.023)delta(37)Cl(IRMS)+(0.059 +/- 0.056), with a correlation coefficient: R-2 = 0.996. Our study shows that, for fluid samples, if chlorine isotopic compositions are near 0 parts per thousand, their measurements either by IRMS or TIMS will give comparable results within less than +/- 0.10 parts per thousand, while for delta(37)Cl values as far as 10 parts per thousand (either positive or negative) from SMOC, both techniques will agree within less than +/- 0.30 parts per thousand. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Diuron is one of the most commonly found N-phenylurea herbicides in marine/estuarine waters that promotes toxic effects by inhibiting photosynthesis and affecting the production of reactive oxygen species (ROS) in autotrophs. Since photo- and thermoacclimation are also ROS-mediated processes, this work evaluates a hypothetical additive effect of high light (HL) and chilling (12 degrees C) on 50 nM diuron toxicity to the highly-photosynthetically active apices of the red alga Kappaphycus alvarezii. Additive inhibition of photosynthesis was mainly evidenced by significant decreases of quantum yield of photosystem II and electron transfer rates upon co-stressors exposure to diuron-treated algae. Under extreme 12 degrees C/HL/diuron conditions, unexpected lower correlations between H(2)O(2) concentrations in seawater and radical-sensitive protein thiols were concomitantly measured with the highest indexes of photoinhibition (parameter beta). Altogether, these data support the hypothesis that co-stressors chilling/HL additively inhibit photosynthesis in diuron-exposed K. alvarezii but with less involvement of H(2)O(2) in injury effects than with only chilling or HL. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the present study, the daily relative growth rates (DRGR, in percent per day) of the red macroalga Gracilaria domingensis in synthetic seawater was investigated for the combined influence of five factors, i.e., light (L), temperature (T), nitrate (N), phosphate (P), and molybdate (M), using a statistical design method. The ranges of the experimental cultivation conditions were T, 18-26A degrees C; L, 74-162 mu mol photons m(-2) s(-1); N, 40-80 mu mol L-1; P, 8-16 mu mol L-1; and M, 1-5 nmol L-1. The optimal conditions, which resulted in a maximum growth rate of a parts per thousand yen6.4% d(-1) from 7 to 10 days of cultivation, were determined by analysis of variance (ANOVA) multivariate factorial analysis (with a 2(5) full factorial design) to be L, 74 mu mol photons m(-2) s(-1); T, 26A degrees C; N, 80 mu mol L-1; P, 8 mu mol L-1; and M, 1 nmol L-1. In additional, these growth rate values are close to the growth rate values in natural medium (von Stosch medium), i.e., 6.5-7.0% d(-1). The results analyzed by the ANOVA indicate that the factors N and T are highly significant linear terms, X (L), (alpha = 0.05). On the other hand, the only significant quadratic term (X (Q)) was that for L. Statistically significant interactions between two different factors were found between T vs. L and N vs. T. Finally, a two-way (linear/quadratic interaction) model provided a quite reasonable correlation between the experimental and predicted DRGR values (R (adjusted) (2) = 0.9540).
Resumo:
Se cultivó alga roja Gratelupia doryphora en agua de mar enriquecida con Provasoli y en glicerol. La incubación en agua de mar condujo a un aumento en el porcentaje de los ácidos grasos polünsaturados, mientras que el glicerol incrementó el contenido de lípidos totales. Por tanto, si la alga está siendo producida como un cultivo heterotrófico, es posible aumentar la biomasa de la misma así como el contenido de ácidos grasos biológicamente activos. The red alga Gratelupia doryphora was cultivated in Provasoli enricher (plain) seawater and in a glycerol media. The incubation in seawater leads to an increase in the percentage of polyunsaturated acids, while the glycerol increase the total lipid content. If the alga is being grown as a heterotrophic culture, it is possible to increase the alga biomass as well as the content of biologically-active fatty acids.
Resumo:
We have examined the relationship between Fe and blooms of the toxic dinoflagellate Alexandrium tamarense (Balech) (formerly Gonyaulax tamarensis var. excavata (Lebour)) using a chemical method that estimates the biological availability of Fe in seawater. The Fe requirement for optimal growth of A. tamarense in sequential batch culture (ca 3 nM 'available' Fe) was compared with Fe concentrations in waters of the Gulf of Maine, USA. Results indicated that Fe did not limit growth of the organism in nearshore coastal waters or over Georges Bank, but that the organism may have been Fe-limited in Gulf of Maine basin waters. The distribution of A. tamarense in the Gulf of Maine is consistent with these Fe data. Red tide outbreaks in the nearshore environment did not correlate with changes in total Fe or the estimated Fe availability. Although Fe did not appear to trigger outbreaks of A. tamarense in Maine coastal waters, the findings are consistent with suggestions that pulsed inputs of Fe may be important for the development of toxic dinoflagellate blooms in regions (e.g. Florida) where outbreaks are initiated offshore.