987 resultados para Sea-level changes
Resumo:
Local to regional climate anomalies are to a large extent determined by the state of the atmospheric circulation. The knowledge of large-scale sea level pressure (SLP) variations in former times is therefore crucial when addressing past climate changes across Europe and the Mediterranean. However, currently available SLP reconstructions lack data from the ocean, particularly in the pre-1850 period. Here we present a new statistically-derived 5° × 5° resolved gridded seasonal SLP dataset covering the eastern North Atlantic, Europe and the Mediterranean area (40°W–50°E; 20°N–70°N) back to 1750 using terrestrial instrumental pressure series and marine wind information from ship logbooks. For the period 1750–1850, the new SLP reconstruction provides a more accurate representation of the strength of the winter westerlies as well as the location and variability of the Azores High than currently available multiproxy pressure field reconstructions. These findings strongly support the potential of ship logbooks as an important source to determine past circulation variations especially for the pre-1850 period. This new dataset can be further used for dynamical studies relating large-scale atmospheric circulation to temperature and precipitation variability over the Mediterranean and Eurasia, for the comparison with outputs from GCMs as well as for detection and attribution studies.
Resumo:
A 250-year, high-resolution, multivariate ice core record from LGB65 (70degrees50'07"S, 77degrees04'29"E; 1850 m asl), Princess Elizabeth Land (PEL), is used to investigate sea level pressure (SLP) variability over the southern Indian Ocean (SIO). Empirical orthogonal function (EOF) analysis reveals that the first EOF (EOF1) of the glaciochemical record from LGB65 represents most of the variability in sea salt throughout the 250-year record. EOF1 is negatively correlated (95% confidence level and higher) to instrumental mean sea level pressure (MSLP) at Kerguelen and New Amsterdam islands, SIO. On the basis of comparison with NCEP/NCAR reanalysis, strong correlations were found between sea-salt variations and a quasi-stationary low that lies to the north of Prydz Bay, SIO. Comparison with a 250-year-long summer transpolar index (STPI) inferred from sub-Antarctic tree ring records reveals strong coherency. Decadal-scale SLP variability over SIO suggests shifting of the polar vortex. Prominent decadal-scale deepening of the southern Indian Ocean low (SIOL) exists circa 1790, 1810, 1835, 1860, 1880, 1900, and 1940 A. D., continuously after the 1970s, and prominent weakening circa 1750, 1795, 1825, 1850, 1870, 1890, 1910, and 1955 A. D. The LGB65 sea-salt record is characterized by significant decadal-scale variability with a strong similar to21-year periodic structure (99.9% confidence level). The relationship between LGB65 sea salt and solar irradiance changes shows that this periodicity is possibly the solar Hale cycle ( 22 years).
Resumo:
During the mid-Pleistocene transition the dominant 41 ka periodicity of glacial cycles transitioned to a quasi-100 ka periodicity for reasons not yet known. This study investigates the potential role of deep ocean hydrography by examining oxygen isotope ratios in benthic foraminifera. Oxygen isotope records from the Atlantic, Pacific and Indian Ocean basins are separated into their ice volume and local temperature/hydrography components using a piece-wise linear transfer function and a temperature calibration. Although our method has certain limitations, the deep ocean hydrography reconstructions show that glacial deep ocean temperatures approached freezing point as the mid-Pleistocene transition progressed. Further analysis suggests that water mass reorganisation could have been responsible for these temperature changes, leading to such stable conditions in the deep ocean that some obliquity cycles were skipped until precessional forcing triggered deglaciation, creating the apparent quasi-100 ka pattern. This study supports previous work that suggests multiples of obliquity cycles dominate the quasi-100 ka glacial cycles with precession components driving deglaciations.
Resumo:
During the past five million yrs, benthic d18O records indicate a large range of climates, from warmer than today during the Pliocene Warm Period to considerably colder during glacials. Antarctic ice cores have revealed Pleistocene glacial-interglacial CO2 variability of 60-100 ppm, while sea level fluctuations of typically 125 m are documented by proxy data. However, in the pre-ice core period, CO2 and sea level proxy data are scarce and there is disagreement between different proxies and different records of the same proxy. This hampers comprehensive understanding of the long-term relations between CO2, sea level and climate. Here, we drive a coupled climate-ice sheet model over the past five million years, inversely forced by a stacked benthic d18O record. We obtain continuous simulations of benthic d18O, sea level and CO2 that are mutually consistent. Our model shows CO2 concentrations of 300 to 470 ppm during the Early Pliocene. Furthermore, we simulate strong CO2 variability during the Pliocene and Early Pleistocene. These features are broadly supported by existing and new d11B-based proxy CO2 data, but less by alkenone-based records. The simulated concentrations and variations therein are larger than expected from global mean temperature changes. Our findings thus suggest a smaller Earth System Sensitivity than previously thought. This is explained by a more restricted role of land ice variability in the Pliocene. The largest uncertainty in our simulation arises from the mass balance formulation of East Antarctica, which governs the variability in sea level, but only modestly affects the modeled CO2 concentrations.
Resumo:
The middle Miocene delta18O increase represents a fundamental change in earth's climate system due to a major expansion and permanent establishment of the East Antarctic Ice Sheet accompanied by some effect of deepwater cooling. The long-term cooling trend in the middle to late Miocene was superimposed by several punctuated periods of glaciations (Mi-Events) characterized by oxygen isotopic shifts that have been related to the waxing and waning of the Antarctic ice-sheet and bottom water cooling. Here, we present a high-resolution benthic stable oxygen isotope record from ODP Site 1085 located at the southwestern African continental margin that provides a detailed chronology for the middle to late Miocene (13.9-7.3 Ma) climate transition in the eastern South Atlantic. A composite Fe intensity record obtained by XRF core scanning ODP Sites 1085 and 1087 was used to construct an astronomically calibrated chronology based on orbital tuning. The oxygen isotope data exhibit four distinct delta18O excursions, which have astronomical ages of 13.8, 13.2, 11.7, and 10.4 Ma and correspond to the Mi3, Mi4, Mi5, and Mi6 events. A global climate record was extracted from the oxygen isotopic composition. Both long- and short-term variabilities in the climate record are discussed in terms of sea-level and deep-water temperature changes. The oxygen isotope data support a causal link between sequence boundaries traced from the shelf and glacioeustatic changes due to ice-sheet growth. Spectral analysis of the benthic delta18O record shows strong power in the 400-kyr and 100-kyr bands documenting a paleoceanographic response to eccentricity-modulated variations in precession. A spectral peak around 180-kyr might be related to the asymmetry of the obliquity cycle indicating that the response of the dominantly unipolar Antarctic ice-sheet to obliquityinduced variations probably controlled the middle to late Miocene climate system. Maxima in the delta18O record, interpreted as glacial periods, correspond to minima in 100-kyr eccentricity cycle and minima in the 174-kyr obliquity modulation. Strong middle to late Miocene glacial events are associated with 400-kyr eccentricity minima and obliquity modulation minima. Thus, fluctuations in the amplitude of obliquity and eccentricity seem to be the driving force for the middle to late Miocene climate variability.
Resumo:
El objetivo final de las investigaciones recogidas en esta tesis doctoral es la estimación del volumen de hielo total de los ms de 1600 glaciares de Svalbard, en el Ártico, y, con ello, su contribución potencial a la subida del nivel medio del mar en un escenario de calentamiento global. Los cálculos más exactos del volumen de un glaciar se efectúan a partir de medidas del espesor de hielo obtenidas con georradar. Sin embargo, estas medidas no son viables para conjuntos grandes de glaciares, debido al coste, dificultades logísticas y tiempo requerido por ellas, especialmente en las regiones polares o de montaña. Frente a ello, la determinación de áreas de glaciares a partir de imágenes de satélite sí es viable a escalas global y regional, por lo que las relaciones de escala volumen-área constituyen el mecanismo más adecuado para las estimaciones de volúmenes globales y regionales, como las realizadas para Svalbard en esta tesis. Como parte del trabajo de tesis, hemos elaborado un inventario de los glaciares de Svalbard en los que se han efectuado radioecosondeos, y hemos realizado los cálculos del volumen de hielo de más de 80 cuencas glaciares de Svalbard a partir de datos de georradar. Estos volúmenes han sido utilizados para calibrar las relaciones volumen-área desarrolladas en la tesis. Los datos de georradar han sido obtenidos en diversas campañas llevadas a cabo por grupos de investigación internacionales, gran parte de ellas lideradas por el Grupo de Simulación Numérica en Ciencias e Ingeniería de la Universidad Politécnica de Madrid, del que forman parte la doctoranda y los directores de tesis. Además, se ha desarrollado una metodología para la estimación del error en el cálculo de volumen, que aporta una novedosa técnica de cálculo del error de interpolación para conjuntos de datos del tipo de los obtenidos con perfiles de georradar, que presentan distribuciones espaciales con unos patrones muy característicos pero con una densidad de datos muy irregular. Hemos obtenido en este trabajo de tesis relaciones de escala específicas para los glaciares de Svalbard, explorando la sensibilidad de los parámetros a diferentes morfologías glaciares, e incorporando nuevas variables. En particular, hemos efectuado experimentos orientados a verificar si las relaciones de escala obtenidas caracterizando los glaciares individuales por su tamaño, pendiente o forma implican diferencias significativas en el volumen total estimado para los glaciares de Svalbard, y si esta partición implica algún patrón significativo en los parámetros de las relaciones de escala. Nuestros resultados indican que, para un valor constante del factor multiplicativo de la relacin de escala, el exponente que afecta al área en la relación volumen-área decrece según aumentan la pendiente y el factor de forma, mientras que las clasificaciones basadas en tamaño no muestran un patrón significativo. Esto significa que los glaciares con mayores pendientes y de tipo circo son menos sensibles a los cambios de área. Además, los volúmenes de la población total de los glaciares de Svalbard calculados con fraccionamiento en grupos por tamaño y pendiente son un 1-4% menores que los obtenidas usando la totalidad de glaciares sin fraccionamiento en grupos, mientras que los volúmenes calculados fraccionando por forma son un 3-5% mayores. También realizamos experimentos multivariable para obtener estimaciones óptimas del volumen total mediante una combinación de distintos predictores. Nuestros resultados muestran que un modelo potencial simple volumen-área explica el 98.6% de la varianza. Sólo el predictor longitud del glaciar proporciona significación estadística cuando se usa además del área del glaciar, aunque el coeficiente de determinación disminuye en comparación con el modelo más simple V-A. El predictor intervalo de altitud no proporciona información adicional cuando se usa además del área del glaciar. Nuestras estimaciones del volumen de la totalidad de glaciares de Svalbard usando las diferentes relaciones de escala obtenidas en esta tesis oscilan entre 6890 y 8106 km3, con errores relativos del orden de 6.6-8.1%. El valor medio de nuestras estimaciones, que puede ser considerado como nuestra mejor estimación del volumen, es de 7.504 km3. En términos de equivalente en nivel del mar (SLE), nuestras estimaciones corresponden a una subida potencial del nivel del mar de 17-20 mm SLE, promediando 19_2 mm SLE, donde el error corresponde al error en volumen antes indicado. En comparación, las estimaciones usando las relaciones V-A de otros autores son de 13-26 mm SLE, promediando 20 _ 2 mm SLE, donde el error representa la desviación estándar de las distintas estimaciones. ABSTRACT The final aim of the research involved in this doctoral thesis is the estimation of the total ice volume of the more than 1600 glaciers of Svalbard, in the Arctic region, and thus their potential contribution to sea-level rise under a global warming scenario. The most accurate calculations of glacier volumes are those based on ice-thicknesses measured by groundpenetrating radar (GPR). However, such measurements are not viable for very large sets of glaciers, due to their cost, logistic difficulties and time requirements, especially in polar or mountain regions. On the contrary, the calculation of glacier areas from satellite images is perfectly viable at global and regional scales, so the volume-area scaling relationships are the most useful tool to determine glacier volumes at global and regional scales, as done for Svalbard in this PhD thesis. As part of the PhD work, we have compiled an inventory of the radio-echo sounded glaciers in Svalbard, and we have performed the volume calculations for more than 80 glacier basins in Svalbard from GPR data. These volumes have been used to calibrate the volume-area relationships derived in this dissertation. Such GPR data have been obtained during fieldwork campaigns carried out by international teams, often lead by the Group of Numerical Simulation in Science and Engineering of the Technical University of Madrid, to which the PhD candidate and her supervisors belong. Furthermore, we have developed a methodology to estimate the error in the volume calculation, which includes a novel technique to calculate the interpolation error for data sets of the type produced by GPR profiling, which show very characteristic data distribution patterns but with very irregular data density. We have derived in this dissertation scaling relationships specific for Svalbard glaciers, exploring the sensitivity of the scaling parameters to different glacier morphologies and adding new variables. In particular, we did experiments aimed to verify whether scaling relationships obtained through characterization of individual glacier shape, slope and size imply significant differences in the estimated volume of the total population of Svalbard glaciers, and whether this partitioning implies any noticeable pattern in the scaling relationship parameters. Our results indicate that, for a fixed value of the factor in the scaling relationship, the exponent of the area in the volume-area relationship decreases as slope and shape increase, whereas size-based classifications do not reveal any clear trend. This means that steep slopes and cirque-type glaciers are less sensitive to changes in glacier area. Moreover, the volumes of the total population of Svalbard glaciers calculated according to partitioning in subgroups by size and slope are smaller (by 1-4%) than that obtained considering all glaciers without partitioning into subgroups, whereas the volumes calculated according to partitioning in subgroups by shape are 3-5% larger. We also did multivariate experiments attempting to optimally predict the volume of Svalbard glaciers from a combination of different predictors. Our results show that a simple power-type V-A model explains 98.6% of the variance. Only the predictor glacier length provides statistical significance when used in addition to the predictor glacier area, though the coefficient of determination decreases as compared with the simpler V-A model. The predictor elevation range did not provide any additional information when used in addition to glacier area. Our estimates of the volume of the entire population of Svalbard glaciers using the different scaling relationships that we have derived along this thesis range within 6890-8106 km3, with estimated relative errors in total volume of the order of 6.6-8.1% The average value of all of our estimates, which could be used as a best estimate for the volume, is 7,504 km3. In terms of sea-level equivalent (SLE), our volume estimates correspond to a potential contribution to sea-level rise within 17-20 mm SLE, averaging 19 _ 2 mm SLE, where the quoted error corresponds to our estimated relative error in volume. For comparison, the estimates using the V-A scaling relations found in the literature range within 13-26 mm SLE, averaging 20 _ 2 mm SLE, where the quoted error represents the standard deviation of the different estimates.
Resumo:
We present a set of new volume scaling relationships specific to Svalbard glaciers, derived from a sample of 60 volume–area pairs. Glacier volumes are computed from ground-penetrating radar (GPR)-retrieved ice thickness measurements, which have been compiled from different sources for this study. The most precise scaling models, in terms of lowest cross-validation errors, are obtained using a multivariate approach where, in addition to glacier area, glacier length and elevation range are also used as predictors. Using this multivariate scaling approach, together with the Randolph Glacier Inventory V3.2 for Svalbard and Jan Mayen, we obtain a regional volume estimate of 6700 ± 835 km3, or 17 ± 2 mm of sea-level equivalent (SLE). This result lies in the mid- to low range of recently published estimates, which show values as varied as 13 and 24 mm SLE. We assess the sensitivity of the scaling exponents to glacier characteristics such as size, aspect ratio and average slope, and find that the volume of steep-slope and cirque-type glaciers is not very sensitive to changes in glacier area.
Resumo:
This paper forms part of Lukasz Mikolajczyk's PhD dissertation, which is supervised by Karen Milek
Resumo:
The total sea level variation (SLV) is the combination of steric and mass␣induced SLV, whose exact shares are key to understanding the oceanic response to climate system changes. Total SLV can be observed by radar altimetry satellites such as TOPEX/POSEIDON and Jason 1/2. The steric SLV can be computed through temperature and salinity profiles from in situ measurements or from ocean general circulation models (OGCM), which can assimilate the said observations. The mass-induced SLV can be estimated from its time-variable gravity (TVG) signals. We revisit this problem in the Mediterranean Sea estimating the observed, steric, and mass-induced SLV, for the latter we analyze the latest TVG data set from the GRACE (Gravity Recovery and Climate Experiment) satellite mission launched in 2002, which is 3.5 times longer than in previous studies, with the application of a two-stage anisotropic filter to reduce the noise in high-degree and -order spherical harmonic coefficients. We confirm that the intra-annual total SLV are only produced by water mass changes, a fact explained in the literature as a result of the wind field around the Gibraltar Strait. The steric SLV estimated from the residual of “altimetry minus GRACE” agrees in phase with that estimated from OGCMs and in situ measurements, although showing a higher amplitude. The net water fluxes through both the straits of Gibraltar and Sicily have also been estimated accordingly.
Resumo:
The sea level variation (SLVtotal) is the sum of two major contributions: steric and mass-induced. The steric SLVsteric is that resulting from the thermal and salinity changes in a given water column. It only involves volume change, hence has no gravitational effect. The mass-induced SLVmass, on the other hand, arises from adding or subtracting water mass to or from the water column and has direct gravitational signature. We examine the closure of the seasonal SLV budget and estimate the relative importance of the two contributions in the Mediterranean Sea as a function of time. We use ocean altimetry data (from TOPEX/Poseidon, Jason 1, ERS, and ENVISAT missions) to estimate SLVtotal, temperature, and salinity data (from the Estimating the Circulation and Climate of the Ocean ocean model) to estimate SLVsteric, and time variable gravity data (from Gravity Recovery and Climate Experiment (GRACE) Project, April 2002 to July 2004) to estimate SLVmass. We find that the annual cycle of SLVtotal in the Mediterranean is mainly driven by SLVsteric but moderately offset by SLVmass. The agreement between the seasonal SLVmass estimations from SLVtotal – SLVsteric and from GRACE is quite remarkable; the annual cycle reaches the maximum value in mid-February, almost half a cycle later than SLVtotal or SLVsteric, which peak by mid-October and mid-September, respectively. Thus, when sea level is rising (falling), the Mediterranean Sea is actually losing (gaining) mass. Furthermore, as SLVmass is balanced by vertical (precipitation minus evaporation, P–E) and horizontal (exchange of water with the Atlantic, Black Sea, and river runoff) mass fluxes, we compared it with the P–E determined from meteorological data to estimate the annual cycle of the horizontal flux.
Resumo:
In this study, we propose to estimate the steric sea-level variations over a < 2-year period (April 2002 through December 2003) by combining global mean sea level (GMSL) based on Topex/ Poseidon (T/P) altimetry with time-variable geoid averaged over the oceans, as observed by the GRACE (Gravity Recovery and Climate Experiment) satellite. In effect, altimetry-derived GMSL changes results from two contributions: Steric (thermal plus salinity) effects due to sea water density change and ocean mass change due to water exchange with atmosphere and continents. On the other hand, GRACE data over the oceans provide the ocean mass change component only. The paper first discusses the corrections to apply to the GRACE data. Then the steric contribution to the GMSL is estimated using GRACE and T/P data. Comparison with available thermal expansion based on in situ hydrographic data is performed.
Resumo:
A pilot study of tree rings in a modern mangrove tree (Rhizophora apiculata) from Leizhou Peninsula, northern South China Sea shows that ( 1) the tree-rings are annual; ( 2) the ring widths decrease; and ( 3) their alpha-cellulose delta(13)C values increase from 1982 to 1999 AD, consistent with the trends of annual sea level, salinity and sea surface temperatures in the same period. We propose that such changes were caused by increasingly longer duration of waterlogging in response to sea-level rise. If this is the case, alpha-cellulose delta(13)C in mangrove tree rings can be used as a potential indicator of past sea level fluctuations.
Resumo:
The landscape structure of emergent wetlands in undeveloped portions of the southeastern coastal Everglades is comprised of two distinct components: scattered forest fragments, or tree islands, surrounded by a low matrix of marsh or shrub-dominated vegetation. Changes in the matrix, including the inland transgression of salt-tolerant mangroves and the recession of sawgrass marshes, have been attributed to the combination of sea level rise and reductions in fresh water supply. In this study we examined concurrent changes in the composition of the region’s tree islands over a period of almost three decades. No trend in species composition toward more salt-tolerant trees was observed anywhere, but species characteristic of freshwater swamps increased in forests in which fresh water supply was augmented. Tree islands in the coastal Everglades appear to be buffered from some of the short term effects of salt water intrusion, due to their ability to build soils above the surface of the surrounding wetlands, thus maintaining mesophytic conditions. However, the apparent resistance of tree islands to changes associated with sea level rise is likely to be a temporary stage, as continued salt water intrusion will eventually overwhelm the forests’ capacity to maintain fresh water in the rooting zone.
Resumo:
Calmette Bay within Marguerite Bay along the western side of the Antarctic Peninsula contains one of the most continuous flights of raised beaches described to date in Antarctica. Raised beaches extend to 40.8 m above sea level (masl) and are thought to reflect glacial isostatic adjustment due to the retreat of the Antarctic Peninsula Ice Sheet. Using optically stimulated luminescence (OSL), we dated quartz extracts from cobble surfaces buried in raised beaches at Calmette Bay. The beaches are separated into upper and lower beaches based on OSL ages, geomorphology, and sedimentary fabric. The two sets of beaches are separated by a prominent scarp. One of our OSL ages from the upper beaches dates to 9.3 thousand years ago (ka; as of 1950) consistent with previous extrapolation of sea-level data and the time of ice retreat from inner Marguerite Bay. However, four of the seven ages from the upper beaches date to the timing of glaciation. We interpret these ages to represent reworking of beaches deposited prior to the Last Glacial Maximum (LGM) by advancing and retreating LGM ice. Ages from the lower beaches record relative sea-level fall due to Holocene glacial-isostatic adjustment. We suggest a Holocene marine limit of 21.7 masl with an age of 5.5-7.3 ka based on OSL ages from Calmette Bay and other sea-level constraints in the area. A marine limit at 21.7 masl implies half as much relative sea-level change in Marguerite Bay during the Holocene as suggested by previous sea-level reconstructions. No evidence for a relative sea-level signature of neoglacial events, such as a decrease followed by an increase in RSL fall due to ice advance and retreat associated with the Little Ice Age, is found within Marguerite Bay indicating either: (1) no significant neoglacial advances occurred within Marguerite Bay; (2) rheological heterogeneity allows part of the Antarctic Peninsula (i.e. the South Shetland Islands) to respond to rapid ice mass changes while other regions are incapable of responding to short-lived ice advances; or (3) the magnitude of neoglacial events within Marguerite Bay is too small to resolve through relative sea-level reconstructions. Although the application of reconstructing sea-level histories using OSL-dated raised beach deposits provides a better understanding of the timing and nature of relative sea-level change in Marguerite Bay, we highlight possible problems associated with using raised beaches as sea-level indices due to post-depositional reworking by storm waves.