964 resultados para Science Virtual Laboratory


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main features of virtual organizations are outlined. The mathematical models of functioning of virtual organization are offered on the basis of theory of queuing systems. Characteristics of efficiency are examined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The controlled from distance teaching (DT) in the system of technical education has a row of features: complication of informative content, necessity of development of simulation models and trainers for conducting of practical and laboratory employments, conducting of knowledge diagnostics on the basis of mathematical-based algorithms, organization of execution collective projects of the applied setting. For development of the process of teaching bases of fundamental discipline control system Theory of automatic control (TAC) the combined approach of optimum combination of existent programmatic instruments of support was chosen DT and own developments. The system DT TAC included: controlled from distance course (DC) of TAC, site of virtual laboratory practical works in LAB.TAC and students knowledge remote diagnostic system d-tester.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this study is to demonstrate using weak form partial differential equation (PDE) method for a finite-element (FE) modeling of a new constitutive relation without the need of user subroutine programming. The viscoelastic asphalt mixtures were modeled by the weak form PDE-based FE method as the examples in the paper. A solid-like generalized Maxwell model was used to represent the deforming mechanism of a viscoelastic material, the constitutive relations of which were derived and implemented in the weak form PDE module of Comsol Multiphysics, a commercial FE program. The weak form PDE modeling of viscoelasticity was verified by comparing Comsol and Abaqus simulations, which employed the same loading configurations and material property inputs in virtual laboratory test simulations. Both produced identical results in terms of axial and radial strain responses. The weak form PDE modeling of viscoelasticity was further validated by comparing the weak form PDE predictions with real laboratory test results of six types of asphalt mixtures with two air void contents and three aging periods. The viscoelastic material properties such as the coefficients of a Prony series model for the relaxation modulus were obtained by converting from the master curves of dynamic modulus and phase angle. Strain responses of compressive creep tests at three temperatures and cyclic load tests were predicted using the weak form PDE modeling and found to be comparable with the measurements of the real laboratory tests. It was demonstrated that the weak form PDE-based FE modeling can serve as an efficient method to implement new constitutive models and can free engineers from user subroutine programming.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context: Clinicians use exercises in rehabilitation to enhance sensorimotor-function, however evidence supporting their use is scarce. Objective: To evaluate acute effects of handheld-vibration on joint position sense (JPS). Design: A repeated-measure, randomized, counter-balanced 3-condition design. Setting: Sports Medicine and Science Research Laboratory. Patients or Other Participants: 31 healthy college-aged volunteers (16-males, 15-females; age=23+3y, mass=76+14kg, height=173+8cm). Interventions: We measured elbow JPS and monitored training using the Flock-of-Birds system (Ascension Technology, Burlington, VT) and MotionMonitor software (Innsport, Chicago, IL), accurate to 0.5°. For each condition (15,5,0Hz vibration), subjects completed three 15-s bouts holding a 2.55kg Mini-VibraFlex dumbbell (Orthometric, New York, NY), and used software-generated audio/visual biofeedback to locate the target. Participants performed separate pre- and post-test JPS measures for each condition. For JPS testing, subjects held a non-vibrating dumbbell, identified the target (90°flexion) using biofeedback, and relaxed 3-5s. We removed feedback and subjects recreated the target and pressed a trigger. We used SPSS 14.0 (SPSS Inc., Chicago, IL) to perform separate ANOVAs (p<0.05) for each protocol and calculated effect sizes using standard-mean differences. Main Outcome Measures: Dependent variables were absolute and variable error between target and reproduced angles, pre-post vibration training. Results: 0Hz (F1,61=1.310,p=0.3) and 5Hz (F1,61=2.625,p=0.1) vibration did not affect accuracy. 15Hz vibration enhanced accuracy (6.5±0.6 to 5.0±0.5°) (F1,61=8.681,p=0.005,ES=0.3). 0Hz did not affect variability (F1,61=0.007,p=0.9). 5Hz vibration decreased variability (3.0±1.8 to 2.3±1.3°) (F1,61=7.250,p=0.009), as did 15Hz (2.8±1.8 to 1.8±1.2°) (F1,61=24.027, p<0.001). Conclusions: Our results support using handheld-vibration to improve sensorimotor-function. Future research should include injured subjects, functional multi-joint/multi-planar measures, and long-term effects of similar training.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The focus of the present work was on 10- to 12-year-old elementary school students’ conceptual learning outcomes in science in two specific inquiry-learning environments, laboratory and simulation. The main aim was to examine if it would be more beneficial to combine than contrast simulation and laboratory activities in science teaching. It was argued that the status quo where laboratories and simulations are seen as alternative or competing methods in science teaching is hardly an optimal solution to promote students’ learning and understanding in various science domains. It was hypothesized that it would make more sense and be more productive to combine laboratories and simulations. Several explanations and examples were provided to back up the hypothesis. In order to test whether learning with the combination of laboratory and simulation activities can result in better conceptual understanding in science than learning with laboratory or simulation activities alone, two experiments were conducted in the domain of electricity. In these experiments students constructed and studied electrical circuits in three different learning environments: laboratory (real circuits), simulation (virtual circuits), and simulation-laboratory combination (real and virtual circuits were used simultaneously). In order to measure and compare how these environments affected students’ conceptual understanding of circuits, a subject knowledge assessment questionnaire was administered before and after the experimentation. The results of the experiments were presented in four empirical studies. Three of the studies focused on learning outcomes between the conditions and one on learning processes. Study I analyzed learning outcomes from experiment I. The aim of the study was to investigate if it would be more beneficial to combine simulation and laboratory activities than to use them separately in teaching the concepts of simple electricity. Matched-trios were created based on the pre-test results of 66 elementary school students and divided randomly into a laboratory (real circuits), simulation (virtual circuits) and simulation-laboratory combination (real and virtual circuits simultaneously) conditions. In each condition students had 90 minutes to construct and study various circuits. The results showed that studying electrical circuits in the simulation–laboratory combination environment improved students’ conceptual understanding more than studying circuits in simulation and laboratory environments alone. Although there were no statistical differences between simulation and laboratory environments, the learning effect was more pronounced in the simulation condition where the students made clear progress during the intervention, whereas in the laboratory condition students’ conceptual understanding remained at an elementary level after the intervention. Study II analyzed learning outcomes from experiment II. The aim of the study was to investigate if and how learning outcomes in simulation and simulation-laboratory combination environments are mediated by implicit (only procedural guidance) and explicit (more structure and guidance for the discovery process) instruction in the context of simple DC circuits. Matched-quartets were created based on the pre-test results of 50 elementary school students and divided randomly into a simulation implicit (SI), simulation explicit (SE), combination implicit (CI) and combination explicit (CE) conditions. The results showed that when the students were working with the simulation alone, they were able to gain significantly greater amount of subject knowledge when they received metacognitive support (explicit instruction; SE) for the discovery process than when they received only procedural guidance (implicit instruction: SI). However, this additional scaffolding was not enough to reach the level of the students in the combination environment (CI and CE). A surprising finding in Study II was that instructional support had a different effect in the combination environment than in the simulation environment. In the combination environment explicit instruction (CE) did not seem to elicit much additional gain for students’ understanding of electric circuits compared to implicit instruction (CI). Instead, explicit instruction slowed down the inquiry process substantially in the combination environment. Study III analyzed from video data learning processes of those 50 students that participated in experiment II (cf. Study II above). The focus was on three specific learning processes: cognitive conflicts, self-explanations, and analogical encodings. The aim of the study was to find out possible explanations for the success of the combination condition in Experiments I and II. The video data provided clear evidence about the benefits of studying with the real and virtual circuits simultaneously (the combination conditions). Mostly the representations complemented each other, that is, one representation helped students to interpret and understand the outcomes they received from the other representation. However, there were also instances in which analogical encoding took place, that is, situations in which the slightly discrepant results between the representations ‘forced’ students to focus on those features that could be generalised across the two representations. No statistical differences were found in the amount of experienced cognitive conflicts and self-explanations between simulation and combination conditions, though in self-explanations there was a nascent trend in favour of the combination. There was also a clear tendency suggesting that explicit guidance increased the amount of self-explanations. Overall, the amount of cognitive conflicts and self-explanations was very low. The aim of the Study IV was twofold: the main aim was to provide an aggregated overview of the learning outcomes of experiments I and II; the secondary aim was to explore the relationship between the learning environments and students’ prior domain knowledge (low and high) in the experiments. Aggregated results of experiments I & II showed that on average, 91% of the students in the combination environment scored above the average of the laboratory environment, and 76% of them scored also above the average of the simulation environment. Seventy percent of the students in the simulation environment scored above the average of the laboratory environment. The results further showed that overall students seemed to benefit from combining simulations and laboratories regardless of their level of prior knowledge, that is, students with either low or high prior knowledge who studied circuits in the combination environment outperformed their counterparts who studied in the laboratory or simulation environment alone. The effect seemed to be slightly bigger among the students with low prior knowledge. However, more detailed inspection of the results showed that there were considerable differences between the experiments regarding how students with low and high prior knowledge benefitted from the combination: in Experiment I, especially students with low prior knowledge benefitted from the combination as compared to those students that used only the simulation, whereas in Experiment II, only students with high prior knowledge seemed to benefit from the combination relative to the simulation group. Regarding the differences between simulation and laboratory groups, the benefits of using a simulation seemed to be slightly higher among students with high prior knowledge. The results of the four empirical studies support the hypothesis concerning the benefits of using simulation along with laboratory activities to promote students’ conceptual understanding of electricity. It can be concluded that when teaching students about electricity, the students can gain better understanding when they have an opportunity to use the simulation and the real circuits in parallel than if they have only the real circuits or only a computer simulation available, even when the use of the simulation is supported with the explicit instruction. The outcomes of the empirical studies can be considered as the first unambiguous evidence on the (additional) benefits of combining laboratory and simulation activities in science education as compared to learning with laboratories and simulations alone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction. The ToLigado Project - Your School Interactive Newspaper is an interactive virtual learning environment conceived, developed, implemented and supported by researchers at the School of the Future Research Laboratory of the University of Sao Paulo, Brazil. Method. This virtual learning environment aims to motivate trans-disciplinary research among public school students and teachers in 2,931 schools equipped with Internet-access computer rooms. Within this virtual community, students produce collective multimedia research documents that are immediately published in the portal. The project also aims to increase students' autonomy for research, collaborative work and Web authorship. Main sections of the portal are presented and described. Results. Partial results of the first two years' implementation are presented and indicate a strong motivation among students to produce knowledge despite the fragile hardware and software infrastructure at the time. Discussion. In this new environment, students should be seen as 'knowledge architects' and teachers as facilitators, or 'curiosity managers'. The ToLigado portal may constitute a repository for future studies regarding student attitudes in virtual learning environments, students' behaviour as 'authors', Web authorship involving collective knowledge production, teachers' behaviour as facilitators, and virtual learning environments as digital repositories of students' knowledge construction and social capital in virtual learning communities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Object-oriented programming languages presently are the dominant paradigm of application development (e. g., Java,. NET). Lately, increasingly more Java applications have long (or very long) execution times and manipulate large amounts of data/information, gaining relevance in fields related with e-Science (with Grid and Cloud computing). Significant examples include Chemistry, Computational Biology and Bio-informatics, with many available Java-based APIs (e. g., Neobio). Often, when the execution of such an application is terminated abruptly because of a failure (regardless of the cause being a hardware of software fault, lack of available resources, etc.), all of its work already performed is simply lost, and when the application is later re-initiated, it has to restart all its work from scratch, wasting resources and time, while also being prone to another failure and may delay its completion with no deadline guarantees. Our proposed solution to address these issues is through incorporating mechanisms for checkpointing and migration in a JVM. These make applications more robust and flexible by being able to move to other nodes, without any intervention from the programmer. This article provides a solution to Java applications with long execution times, by extending a JVM (Jikes research virtual machine) with such mechanisms. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work describes the characteristics of a representative set of seven different virtual laboratories (VLs) aimed for science teaching in secondary school. For this purpose, a 27-item evaluation model that facilitates the characterization of the VLs was prepared. The model takes into account the gaming features, the overall usability, and also the potential to induce scientific literacy. Five of the seven VLs were then tested with two larger and highly heterogenic groups of students, and in two different contexts – biotechnology and physics, respectively. It is described how the VLs were received by the students, taking into account both their motivation and their self-reported learning outcome. In some cases, students’ approach to work with the VLs was recorded digitally, and analyzed qualitatively. In general, the students enjoyed the VL activities, and claimed that they learned from them. Yet, more investigation is required to address the effectiveness of these tools for significant learning.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Monogr??fico con el t??tulo: " Formaci??n de profesores. Perspectivas de Brasil, Colombia, Espa??a y Portugal"

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The current paper presents a study conducted at CERN, Switzerland, to investigate visitors' and tour guides' use and appreciation of existing panels at visit itinerary points. The results were used to develop a set of recommendations for constructing optimal panels to assist the guides' explanation.