857 resultados para School mathematics


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper focuses on a pilot study that explored the situated mathematical knowledge of mothers and children in one Torres Strait Islander community in Australia. The community encouraged parental involvement in their children’s learning and schooling. The study explored parents’ understandings of mathematics and how their children came to learn about it on the island. A funds of knowledge approach was used in the study. This approach is based on the premise that people are competent and have knowledge that has been historically and culturally accumulated into a body of knowledge and skills essential for their functioning and well-being (Moll, 1992). The participants, three adults and one child are featured in this paper. Three separate events are described with epiphanic or illuminative moments analysed to ascertain the features that enabled an understanding of the nature of the mathematical events. The study found that Indigenous ways of knowing of mathematics were deeply embedded in rich cultural practices that were tied to the community. This finding has implications for teachers of children in the early years. Where school mathematics is often presented as disembodied and isolated facts with children seeing little relevance, learning a different perspective of mathematics that is tied to the resources and practices of children’s lives and facilitated through social relationships, may go a long way to improving the engagement of children and their parents in learning and schooling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Given two independent Poisson point processes Phi((1)), Phi((2)) in R-d, the AB Poisson Boolean model is the graph with the points of Phi((1)) as vertices and with edges between any pair of points for which the intersection of balls of radius 2r centered at these points contains at least one point of Phi((2)). This is a generalization of the AB percolation model on discrete lattices. We show the existence of percolation for all d >= 2 and derive bounds fora critical intensity. We also provide a characterization for this critical intensity when d = 2. To study the connectivity problem, we consider independent Poisson point processes of intensities n and tau n in the unit cube. The AB random geometric graph is defined as above but with balls of radius r. We derive a weak law result for the largest nearest-neighbor distance and almost-sure asymptotic bounds for the connectivity threshold.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este é um trabalho de pesquisa sobre um conjunto de números (irracionais) que é pouco trabalhado no ensino básico de matemática. Foi uma procura muito interessante e enriquecedora, pois encontrei matemáticos e historiadores com visões bem diferentes. Muitos deles não aceitavam este novo conjunto. Para Leopold Kronecker, só existia o conjunto dos números inteiros. Já para Cantor e Dedekind, o aparecimento dos irracionais foi extremamente importante para o desenvolvimento da matemática, abrindo novos horizontes. Menciono aqui um pouco da vida e da obra de alguns matemáticos que se envolveram com os números irracionais. Tratamos ainda da descoberta dos incomensuráveis, ou seja, como iniciou-se o problema da incomensurabilidade, e do retângulo áureo e sua importância em outras áreas. O trabalho mostra também dois grupos de números que não são mencionados quando ensinamos equações algébricas, que são os números algébricos e os números transcendentes, assim como teoremas essenciais para a prova da transcendência dos irracionais especiais e . Por fim, proponho uma aula para uma turma do 3 ano do Ensino Médio com o objetivo de mostrar a irracionalidade de alguns números, usando os teoremas pertinentes

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reflecting a view of “teaching as both an intellectual and practical activity” the Queen’s University Bachelor of Education program has multi-week in-school practicum sessions separated by periods of on-campus course work. The expectation is that teacher candidates will bring together theory and practice as they reflect upon their daily classroom experiences. The reality often is that, while isolated from the university environment and caught up in the pressures of teaching, little deep reflection takes place. For reflection and critical examination of experience to occur, teacher candidates need to share and discuss on a daily basis their practice teaching experience. For the past few years, students in my secondary school mathematics curriculum course, through a WebCT based conference, have been provided, while away from campus, with a place for on-going sharing of teaching stories and dilemmas. In the Fall of 2004 eight-five percent of the class took part in the discussions, posting a total of 667 messages over a 9 week period. In an effort to increase the value of this practicum conference we have analysed the topic threads arising in the conversation, surveyed the participants concerning their impressions of the sharing experience, and conducted in-depth interviews with a sampling of the class. This session will present the results of this study and provide an opportunity to discuss ways in which an online discussion can support the building of community and the exchange of experience while students in professional programs are disbursed in practice/clinical settings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

De nombreuses études sur l’évolution de la motivation pour les mathématiques sont disponibles et il existe également plusieurs recherches qui se sont penchées sur la question de la différence motivationnelle entre les filles et les garçons. Cependant, aucune étude n’a tenu compte de la séquence scolaire des élèves en mathématiques pour comprendre le changement motivationnel vécu pendant le second cycle du secondaire, alors que le classement en différentes séquences est subi par tous au secondaire au Québec. Le but principal de cette étude est de documenter l’évolution de la motivation pour les mathématiques des élèves du second cycle du secondaire en considérant leur séquence de formation scolaire et leur sexe. Les élèves ont été classés dans deux séquences, soit celle des mathématiques de niveau de base (416-514) et une autre de niveau de mathématiques avancé (436-536). Trois mille quatre cent quarante élèves (1864 filles et 1576 garçons) provenant de 30 écoles secondaires publiques francophones de la grande région de Montréal ont répondu à cinq reprises à un questionnaire à items auto-révélés portant sur les variables motivationnelles suivantes : le sentiment de compétence, l’anxiété de performance, la perception de l’utilité des mathématiques, l’intérêt pour les mathématiques et les buts d’accomplissement. Ces élèves étaient inscrits en 3e année du secondaire à la première année de l’étude. Ils ont ensuite été suivis en 4e et 5e année du secondaire. Les résultats des analyses à niveaux multiples indiquent que la motivation scolaire des élèves est généralement en baisse au second cycle du secondaire. Cependant, cette diminution est particulièrement criante pour les élèves inscrits dans les séquences de mathématiques avancées. En somme, les résultats indiquent que les élèves inscrits dans les séquences avancées montrent des diminutions importantes de leur sentiment de compétence au second cycle du secondaire. Leur anxiété de performance est en hausse à la fin du secondaire et l’intérêt et la perception de l’utilité des mathématiques chutent pour l’ensemble des élèves. Les buts de maîtrise-approche sont également en baisse pour tous et les élèves des séquences de base maintiennent généralement des niveaux plus faibles. Une diminution des buts de performance-approche est aussi retrouvée, mais cette dernière n’atteint que les élèves dans les séquences de formation avancées. Des hausses importantes des buts d’évitement du travail sont retrouvées pour les élèves des séquences de mathématiques avancées à la fin du secondaire. Ainsi, les élèves des séquences de mathématiques avancées enregistrent la plus forte baisse motivationnelle pendant le second cycle du secondaire bien qu’ils obtiennent généralement des scores supérieurs aux élèves des séquences de base. Ces derniers maintiennent généralement leur niveau motivationnel. La différence motivationnelle entre les filles et les garçons ne sont pas souvent significatives, malgré le fait que les filles maintiennent généralement un niveau motivationnel inférieur à celui des garçons, et ce, par rapport à leur séquence de formation respective. En somme, les résultats de la présente étude indiquent que la diminution de la motivation au second cycle du secondaire pour les mathématiques touche principalement les élèves des séquences avancées. Il paraît ainsi pertinent de considérer la séquence scolaire dans les études sur l’évolution de la motivation, du moins en mathématiques. Il semble particulièrement important d’ajuster les interventions pédagogiques proposées aux élèves des séquences avancées afin de faciliter leur transition en mathématiques de quatrième secondaire.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Idoneidad de los contenidos establecidos en un programa experimental, para el área de Matemáticas en el sexto nivel de EGB, así como los problemas que plantea conocer las condiciones adecuadas en cada nivel y cuáles son sus índices probables de éxitos; cómo debe ser la secuencialidad con que éstos se imparten y qué modificaciones deben hacerse en el planteamiento de esta área y, evaluar los conocimientos matemáticos que deben superar los alumnos en este nivel. Alumnos de distintos colegios de EGB de Granada y Almería. Aplicación de pretest y pruebas de control divididas en diferentes ítems. Se aplicaron a lo largo de 12 quincenas del curso escolar. Los alumnos que comparten la experiencia son calificados bajo el mismo criterio. Los datos obtenidos se pasan a fichas para realizar una calificación objetiva de los alumnos. Pruebas matemáticas propuestas por el equipo de investigacion. Prueba de kolmogorov-Smirnov. Desviación típica. Taxonomía de la National Longitudinal School Mathematics Achievement. Se muestran a través de tablas estadísticas. El 75 por ciento de los objetivos propuestos alcanzan o superan el nivel de idoneidad. Los contenidos propuestos para este nivel son idóneos de acuerdo con la interpretación del cuestionario propuesto y de las pruebas de control realizadas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Investigación sobre la idoneidad de los contenidos establecidos en un programa experimental para el área de Matemáticas en el séptimo nivel de EGB, así como los problemas que plantea, para de este modo conocer con exactitud cuáles son las condiciones adecuadas en cada nivel y cuáles son sus índices probables de éxitos, cómo debe ser la secuencialidad con que éstos se imparten y qué modificaciones deben hacerse en el planteamiento de esta área y evaluar los conocimientos matemáticos que deben superar los alumnos de este nivel para introducirse con éxito en los contenidos del siguiente nivel. Alumnos de distintos colegios de EGB de Granada y Almería. Aplicación de pretests y pruebas de control divididas en diferentes ítems; estas pruebas se aplican a lo largo de 14 quincenas del curso escolar. Los alumnos que comparten la experiencia son calificados bajo el mismo criterio. Los datos obtenidos se pasan a fichas para realizar una calificación objetiva de los alumnos. Pruebas matemáticas propuestas por el equipo de investigación. Prueba de kolmogorov-Smirnov; taxonomía de la National Longitudinal School Mathematics Achievement. Se muestran a través de tablas estadísticas. 1. Un 75 por ciento de los alumnos dominan al menos un 70 por ciento de los contenidos. 2. Hay más capacidad de razonamiento que de cálculo en este nivel. 3. La distribución obtenida es altamente representativa del grado de asimilación que tienen los contenidos programados para el séptimo nivel de EGB.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Investigación sobre la idoneidad de los contenidos establecidos en un programa experimental para el área de Matemáticas en el sexto nivel de EGB, así como los problemas que plantea, para de este modo conocer con exactitud cuáles son las condiciones adecuadas en cada nivel y cuáles son sus índices probables de éxito, cómo debe ser la secuencialidad con que éstos se impartan y qué modificaciones deben hacerse en el planteamiento de esta área y evaluar los conocimientos matemáticos que deben superar los alumnos de este nivel para introducirse con éxito en los contenidos del siguiente nivel. Alumnos de distintos colegios de EGB de las provincias de Granada y Almería. Aplicación de pretests y pruebas de control, divididas en diferentes ítems; estas pruebas se realizan a lo largo de 14 quincenas del curso escolar. Los alumnos que comparten la experiencia son calificados bajo el mismo criterio. Los datos obtenidos se pasan a una serie de fichas para realizar una calificación objetiva de los alumnos. Pruebas matemáticas propuestas por el equipo de investigación. Índice Kuder-Richardson; prueba de Kolmogorov-Smirnov; taxonomía de la National Longitudinal School Mathematics Achievement. Se muestran a través de tablas estadísticas. Se consigue un mayor equilibrio en la distribución de los objetivos, de acuerdo con su grado de dificultad. El curso en conjunto resulta asequible ya que el 74'6 por ciento de los objetivos propuestos alcanzan o superan el nivel de idoneidad. El cuestionario de este nivel es más adecuado a la capacidad de los alumnos que el correspondiente del quinto nivel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis describes and analyzes various processes established and practiced by both groups about the socio-cultural objective (action) the measurement and timing, mobilized some socio-historical practices as the use of the gnômon of the sundial and reading and interpretation of movements celestial constellations in cultural contexts such as indigenous communities and fishermen in the state of Pará, Brazil. The Purpose of the study was to describe and analyze the mobilization of such practices in the socio-historical development of matrices for teaching concepts and skills related to geometric angles, similar triangles, symmetry and proportionality in the training of mathematics teachers. The record of the entire history of investigation into the socio-historical practice, the formative action was based on epistemological assumptions of education ethnomathematics proposed by Vergani (2000, 2007) and Ubiratan D'Ambrosio (1986, 1993, 1996, 2001, 2004) and Alain Bishop conceptions about mathematics enculturation. At the end of the study I present my views on the practices of contributions called socio-cultural and historical for school mathematics, to give meaning to the concept formation and teaching of students, especially the implications of Education Ethnomatematics proposed by Vergani (2000) for training of future teachers of mathematics

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper aims to build a notebook of activities that can help the teacher of elementary school mathematics. Topics covered are arithmetic and geometry and the activities proposed here were developed aiming print them a multicultural character. We take as a base line developed by Claudia Zaslavsky multiculturalism and reflected in his books "Games and activities worldwide" and "More games and activities worldwide." We structure our work around four themes: the symbol of the Olympic Games, the pyramids of Egypt, the Russian abacus abacus and Chinese. The first two themes allow you to explore basic concepts of geometry while the latter two themes allow us to explore numerical notation and arithmetic operations

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objetivo do presente texto é apresentar os resultados de uma pesquisa que procurou discutir a formação dos professores de Matemática que trabalham com projetos e documentar a maneira da implementação dessa proposta na escola. Os dados são provenientes de entrevistas com dez professores de Matemática, os quais atuam no Ensino Fundamental ou Médio. Seus relatos possibilitam identificar três formas diferentes de trabalhos com projetos: i) individualmente e por iniciativa própria; ii) por sugestão da escola, de forma fragmentada; iii) coletivamente. Não há indícios de que a formação inicial desses professores os tenha influenciado a trabalhar com projetos. Esse preparo foi construído ao longo de suas carreiras, através da participação em cursos de formação continuada, da experiência com a prática e das interferências de suas características pessoais.