889 resultados para Scenario planning
Resumo:
Although the use of climate scenarios for impact assessment has grown steadily since the 1990s, uptake of such information for adaptation is lagging by nearly a decade in terms of scientific output. Nonetheless, integration of climate risk information in development planning is now a priority for donor agencies because of the need to prepare for climate change impacts across different sectors and countries. This urgency stems from concerns that progress made against Millennium Development Goals (MDGs) could be threatened by anthropogenic climate change beyond 2015. Up to this time the human signal, though detectable and growing, will be a relatively small component of climate variability and change. This implies the need for a twin-track approach: on the one hand, vulnerability assessments of social and economic strategies for coping with present climate extremes and variability, and, on the other hand, development of climate forecast tools and scenarios to evaluate sector-specific, incremental changes in risk over the next few decades. This review starts by describing the climate outlook for the next couple of decades and the implications for adaptation assessments. We then review ways in which climate risk information is already being used in adaptation assessments and evaluate the strengths and weaknesses of three groups of techniques. Next we identify knowledge gaps and opportunities for improving the production and uptake of climate risk information for the 2020s. We assert that climate change scenarios can meet some, but not all, of the needs of adaptation planning. Even then, the choice of scenario technique must be matched to the intended application, taking into account local constraints of time, resources, human capacity and supporting infrastructure. We also show that much greater attention should be given to improving and critiquing models used for climate impact assessment, as standard practice. Finally, we highlight the over-arching need for the scientific community to provide more information and guidance on adapting to the risks of climate variability and change over nearer time horizons (i.e. the 2020s). Although the focus of the review is on information provision and uptake in developing regions, it is clear that many developed countries are facing the same challenges. Copyright © 2009 Royal Meteorological Society
Resumo:
Public water supplies in England and Wales are provided by around 25 private-sector companies, regulated by an economic regulator (Ofwat) and and environmental regulator (Environment Agency). As part of the regulatory process, companies are required periodically to review their investment needs to maintain safe and secure supplies, and this involves an assessment of the future balance between water supply and demand. The water industry and regulators have developed an agreed set of procedures for this assessment. Climate change has been incorporated into these procedures since the late 1990s, although has been included increasingly seriously over time and it has been an effective legal requirement to consider climate change since the 2003 Water Act. In the most recent assessment in 2009, companies were required explicitly to plan for a defined amount of climate change, taking into account climate change uncertainty. A “medium” climate change scenario was defined, together with “wet” and “dry” extremes, based on scenarios developed from a number of climate models. The water industry and its regulators are now gearing up to exploit the new UKCP09 probabilistic climate change projections – but these pose significant practical and conceptual challenges. This paper outlines how the procedures for incorporating climate change information into water resources planning have evolved, and explores the issues currently facing the industry in adapting to climate change.
Resumo:
Enterprise Resource Planning is often endorsed as a means to facilitate strategic advantage for businesses. The scarcity of resources is the method by which some businesses maintain their position. However, the ubiquitous trend towards the adoption of Enterprise Resourcing Planning systems coupled with market saturation makes the promise of advantage less compelling. Reported in this paper is a proposed solution based upon semiotic theory that takes a typical Enterprise Resource Planning deployment scenario and shapes it according to the needs of people in post-implementation contexts to leverage strategic advantage in different ways.
Resumo:
We present a framework for prioritizing adaptation approaches at a range of timeframes. The framework is illustrated by four case studies from developing countries, each with associated characterization of uncertainty. Two cases on near-term adaptation planning in Sri Lanka and on stakeholder scenario exercises in East Africa show how the relative utility of capacity vs. impact approaches to adaptation planning differ with level of uncertainty and associated lead time. An additional two cases demonstrate that it is possible to identify uncertainties that are relevant to decision making in specific timeframes and circumstances. The case on coffee in Latin America identifies altitudinal thresholds at which incremental vs. transformative adaptation pathways are robust options. The final case uses three crop–climate simulation studies to demonstrate how uncertainty can be characterized at different time horizons to discriminate where robust adaptation options are possible. We find that impact approaches, which use predictive models, are increasingly useful over longer lead times and at higher levels of greenhouse gas emissions. We also find that extreme events are important in determining predictability across a broad range of timescales. The results demonstrate the potential for robust knowledge and actions in the face of uncertainty.
Resumo:
Planning of autonomous vehicles in the absence of speed lanes is a less-researched problem. However, it is an important step toward extending the possibility of autonomous vehicles to countries where speed lanes are not followed. The advantages of having nonlane-oriented traffic include larger traffic bandwidth and more overtaking, which are features that are highlighted when vehicles vary in terms of speed and size. In the most general case, the road would be filled with a complex grid of static obstacles and vehicles of varying speeds. The optimal travel plan consists of a set of maneuvers that enables a vehicle to avoid obstacles and to overtake vehicles in an optimal manner and, in turn, enable other vehicles to overtake. The desired characteristics of this planning scenario include near completeness and near optimality in real time with an unstructured environment, with vehicles essentially displaying a high degree of cooperation and enabling every possible(safe) overtaking procedure to be completed as soon as possible. Challenges addressed in this paper include a (fast) method for initial path generation using an elastic strip, (re-)defining the notion of completeness specific to the problem, and inducing the notion of cooperation in the elastic strip. Using this approach, vehicular behaviors of overtaking, cooperation, vehicle following,obstacle avoidance, etc., are demonstrated.
Resumo:
Unorganized traffic is a generalized form of travel wherein vehicles do not adhere to any predefined lanes and can travel in-between lanes. Such travel is visible in a number of countries e.g. India, wherein it enables a higher traffic bandwidth, more overtaking and more efficient travel. These advantages are visible when the vehicles vary considerably in size and speed, in the absence of which the predefined lanes are near-optimal. Motion planning for multiple autonomous vehicles in unorganized traffic deals with deciding on the manner in which every vehicle travels, ensuring no collision either with each other or with static obstacles. In this paper the notion of predefined lanes is generalized to model unorganized travel for the purpose of planning vehicles travel. A uniform cost search is used for finding the optimal motion strategy of a vehicle, amidst the known travel plans of the other vehicles. The aim is to maximize the separation between the vehicles and static obstacles. The search is responsible for defining an optimal lane distribution among vehicles in the planning scenario. Clothoid curves are used for maintaining a lane or changing lanes. Experiments are performed by simulation over a set of challenging scenarios with a complex grid of obstacles. Additionally behaviours of overtaking, waiting for a vehicle to cross and following another vehicle are exhibited.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study presents a new methodology based on risk/investment to solve transmission network expansion planning (TNEP) problem with multiple future scenarios. Three mathematical models related to TNEP problems considering multiple future generation and load scenarios are also presented. These models will provide planners with a meaningful risk assessment that enable them to determine the necessary funding for transmission lines at a permissible risk level. The results using test and real systems show that the proposed method presents better solutions compared with scenario analysis method. ©The Institution of Engineering and Technology 2013.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Soil erosion on sloping agricultural land poses a serious problem for the environment, as well as for production. In areas with highly erodible soils, such as those in loess zones, application of soil and water conservation measures is crucial to sustain agricultural yields and to prevent or reduce land degradation. The present study, carried out in Faizabad, Tajikistan, was designed to evaluate the potential of local conservation measures on cropland using a spatial modelling approach to provide decision-making support for the planning of spatially explicit sustainable land use. A sampling design to support comparative analysis between well-conserved units and other field units was established in order to estimate factors that determine water erosion, according to the Revised Universal Soil Loss Equation (RUSLE). Such factor-based approaches allow ready application using a geographic information system (GIS) and facilitate straightforward scenario modelling in areas with limited data resources. The study showed first that assessment of erosion and conservation in an area with inhomogeneous vegetation cover requires the integration of plot-based cover. Plot-based vegetation cover can be effectively derived from high-resolution satellite imagery, providing a useful basis for plot-wise conservation planning. Furthermore, thorough field assessments showed that 25.7% of current total cropland is covered by conservation measures (terracing, agroforestry and perennial herbaceous fodder). Assessment of the effectiveness of these local measures, combined with the RUSLE calculations, revealed that current average soil loss could be reduced through low-cost measures such as contouring (by 11%), fodder plants (by 16%), and drainage ditches (by 53%). More expensive measures such as terracing and agroforestry can reduce erosion by as much as 63% (for agroforestry) and 93% (for agroforestry combined with terracing). Indeed, scenario runs for different levels of tolerable erosion rates showed that more cost-intensive and technologically advanced measures would lead to greater reduction of soil loss. However, given economic conditions in Tajikistan, it seems advisable to support the spread of low-cost and labourextensive measures.
Resumo:
BACKGROUND: In order to optimise the cost-effectiveness of active surveillance to substantiate freedom from disease, a new approach using targeted sampling of farms was developed and applied on the example of infectious bovine rhinotracheitis (IBR) and enzootic bovine leucosis (EBL) in Switzerland. Relevant risk factors (RF) for the introduction of IBR and EBL into Swiss cattle farms were identified and their relative risks defined based on literature review and expert opinions. A quantitative model based on the scenario tree method was subsequently used to calculate the required sample size of a targeted sampling approach (TS) for a given sensitivity. We compared the sample size with that of a stratified random sample (sRS) with regard to efficiency. RESULTS: The required sample sizes to substantiate disease freedom were 1,241 farms for IBR and 1,750 farms for EBL to detect 0.2% herd prevalence with 99% sensitivity. Using conventional sRS, the required sample sizes were 2,259 farms for IBR and 2,243 for EBL. Considering the additional administrative expenses required for the planning of TS, the risk-based approach was still more cost-effective than a sRS (40% reduction on the full survey costs for IBR and 8% for EBL) due to the considerable reduction in sample size. CONCLUSIONS: As the model depends on RF selected through literature review and was parameterised with values estimated by experts, it is subject to some degree of uncertainty. Nevertheless, this approach provides the veterinary authorities with a promising tool for future cost-effective sampling designs.
Resumo:
A software prototype for dynamic route planning in the travel industry for cognitive cities is presented in this paper. In contrast to existing tools, the prototype enhances the travel experience (i.e., sightseeing) by allowing additional flexibility to the user. The theoretical background of the paper strengthens the understanding of the introduced concepts (e.g., cognitive cities, fuzzy logic, graph databases) to comprehend the presented prototype. The prototype applies an instantiation and enhancement of the graph database Neo4j . For didactical reasons and to strengthen the understanding of this prototype a scenario, applied to route planning in the city of Bern (Switzerland) is shown in the paper.
Resumo:
Proton therapy is growing increasingly popular due to its superior dose characteristics compared to conventional photon therapy. Protons travel a finite range in the patient body and stop, thereby delivering no dose beyond their range. However, because the range of a proton beam is heavily dependent on the tissue density along its beam path, uncertainties in patient setup position and inherent range calculation can degrade thedose distribution significantly. Despite these challenges that are unique to proton therapy, current management of the uncertainties during treatment planning of proton therapy has been similar to that of conventional photon therapy. The goal of this dissertation research was to develop a treatment planning method and a planevaluation method that address proton-specific issues regarding setup and range uncertainties. Treatment plan designing method adapted to proton therapy: Currently, for proton therapy using a scanning beam delivery system, setup uncertainties are largely accounted for by geometrically expanding a clinical target volume (CTV) to a planning target volume (PTV). However, a PTV alone cannot adequately account for range uncertainties coupled to misaligned patient anatomy in the beam path since it does not account for the change in tissue density. In order to remedy this problem, we proposed a beam-specific PTV (bsPTV) that accounts for the change in tissue density along the beam path due to the uncertainties. Our proposed method was successfully implemented, and its superiority over the conventional PTV was shown through a controlled experiment.. Furthermore, we have shown that the bsPTV concept can be incorporated into beam angle optimization for better target coverage and normal tissue sparing for a selected lung cancer patient. Treatment plan evaluation method adapted to proton therapy: The dose-volume histogram of the clinical target volume (CTV) or any other volumes of interest at the time of planning does not represent the most probable dosimetric outcome of a given plan as it does not include the uncertainties mentioned earlier. Currently, the PTV is used as a surrogate of the CTV’s worst case scenario for target dose estimation. However, because proton dose distributions are subject to change under these uncertainties, the validity of the PTV analysis method is questionable. In order to remedy this problem, we proposed the use of statistical parameters to quantify uncertainties on both the dose-volume histogram and dose distribution directly. The robust plan analysis tool was successfully implemented to compute both the expectation value and its standard deviation of dosimetric parameters of a treatment plan under the uncertainties. For 15 lung cancer patients, the proposed method was used to quantify the dosimetric difference between the nominal situation and its expected value under the uncertainties.
Resumo:
Coastal managers require reliable spatial data on the extent and timing of potential coastal inundation, particularly in a changing climate. Most sea level rise (SLR) vulnerability assessments are undertaken using the easily implemented bathtub approach, where areas adjacent to the sea and below a given elevation are mapped using a deterministic line dividing potentially inundated from dry areas. This method only requires elevation data usually in the form of a digital elevation model (DEM). However, inherent errors in the DEM and spatial analysis of the bathtub model propagate into the inundation mapping. The aim of this study was to assess the impacts of spatially variable and spatially correlated elevation errors in high-spatial resolution DEMs for mapping coastal inundation. Elevation errors were best modelled using regression-kriging. This geostatistical model takes the spatial correlation in elevation errors into account, which has a significant impact on analyses that include spatial interactions, such as inundation modelling. The spatial variability of elevation errors was partially explained by land cover and terrain variables. Elevation errors were simulated using sequential Gaussian simulation, a Monte Carlo probabilistic approach. 1,000 error simulations were added to the original DEM and reclassified using a hydrologically correct bathtub method. The probability of inundation to a scenario combining a 1 in 100 year storm event over a 1 m SLR was calculated by counting the proportion of times from the 1,000 simulations that a location was inundated. This probabilistic approach can be used in a risk-aversive decision making process by planning for scenarios with different probabilities of occurrence. For example, results showed that when considering a 1% probability exceedance, the inundated area was approximately 11% larger than mapped using the deterministic bathtub approach. The probabilistic approach provides visually intuitive maps that convey uncertainties inherent to spatial data and analysis.
Resumo:
Species selection for forest restoration is often supported by expert knowledge on local distribution patterns of native tree species. This approach is not applicable to largely deforested regions unless enough data on pre-human tree species distribution is available. In such regions, ecological niche models may provide essential information to support species selection in the framework of forest restoration planning. In this study we used ecological niche models to predict habitat suitability for native tree species in "Tierra de Campos" region, an almost totally deforested area of the Duero Basin (Spain). Previously available models provide habitat suitability predictions for dominant native tree species, but including non-dominant tree species in the forest restoration planning may be desirable to promote biodiversity, specially in largely deforested areas were near seed sources are not expected. We used the Forest Map of Spain as species occurrence data source to maximize the number of modeled tree species. Penalized logistic regression was used to train models using climate and lithological predictors. Using model predictions a set of tools were developed to support species selection in forest restoration planning. Model predictions were used to build ordered lists of suitable species for each cell of the study area. The suitable species lists were summarized drawing maps that showed the two most suitable species for each cell. Additionally, potential distribution maps of the suitable species for the study area were drawn. For a scenario with two dominant species, the models predicted a mixed forest (Quercus ilex and a coniferous tree species) for almost one half of the study area. According to the models, 22 non-dominant native tree species are suitable for the study area, with up to six suitable species per cell. The model predictions pointed to Crataegus monogyna, Juniperus communis, J.oxycedrus and J.phoenicea as the most suitable non-dominant native tree species in the study area. Our results encourage further use of ecological niche models for forest restoration planning in largely deforested regions.