810 resultados para Saturated fatty acids
Resumo:
The fatty acid composition of the total cellular lipids of Choanephora cucurbitarum incubated for 96 hrs on either glucose-ammonium sulfate or malt-weast extract media was determined. The major fatty acids were palmitic, palmitoleic, stearic and linoleic acids. The saturated fatty acid possessing the longest acyl chain was stearate (C 18:0). The presence of glutamic acid (2.0 x 10-1% or 1.36 x la-2M) in either of the above growth media resulted in increase in percent of 1f-linolenic acid, decrease in percent of linoleic ~iCid and appearance of a new series of fatty acid> C ~8 e.g. C ",,,,'V' C2k:O, C26,O. The addition of glutamic acid had no effect on the lipid yield but slightly decreased the degree of unsaturation. Compounds which duplicated the effect of glutamic acid were acetate, malate, citrate, succinate, 0( -ketoglutarate, prOline, -y -aminobutyric acid and glucose (3%) but not aspartic acid or alanine. ~o correlation was found between glutamic acid pool concentration and the presence in the growth medium of those compounds which stimulate long chain fatty acid production. Four hours of incubation with 27 JJ 1-1 glutamate supported the production of long chain fatty acids. This stimulation is inhibited if 272 .u M isophthalic acid is added with 27 AJ M glutamate. But, long chain fatty acids were detected when 27 JJ M eX -ketoglutarate is also present in the incubation mixture. Five hours of incubation with 100 ,Mg/ml of cycloheximide resulted in over 9CY/o inhibition of cytoplasmic :protein synthesise Glutamate (27 .uM) enhanced the synthesis of long chain fatty acids under these conditions. These findings are discussed in an attempt to provide a plausible explanation COmmon to compounds that support the production of long chain fatty acids.
Resumo:
Background: Endothelial dysfunction may be related to adverse effects of some dietary fatty acids (FAs). Although in vitro studies have failed to show consistent findings, this may reflect the diverse experimental protocols employed and the limited range of FAs and end points studied. Aims: To investigate the effect of dietary FA type (saturated, monounsaturated, n-6 and n-3 polyunsaturated fatty acids), concentration, incubation time and cell stimulation state, on a broad spectrum of endothelial inflammatory gene expression. Methods: Using human umbilical vein endothelial cells, with and without stimulation (+/- 10 ng/ml TNF alpha), the effects of arachidonic (AA), docosahexaenoic (DHA), eicosapentaenoic (EPA), linoleic (LA), oleic (OA) and palmitic acids (PA) (10, 25 and 100 mu M), on the expression of genes encoding a number of inflammatory proteins and transcription factors were assessed by quantitative real time RT-PCR. Results: Individual FAs differentially affect endothelial inflammatory gene expression in a gene-specific manner. EPA, LA and OA significantly up-regulated MCP-1 gene expression compared to AA (p = 0.001, 0.013, 0.008, respectively) and DHA (p < 0.0005, = 0.004, 0.002, respectively). Furthermore, cell stimulation state and FA incubation time significantly influenced reported FA effects on gene expression. Conclusions: The comparative effects of saturated, monounsaturated, n-6 and n-3 polyunsaturated FAs on endothelial gene expression depend on the specific FA investigated, its length of incubation, cell stimulation state and the gene investigated. These findings may explain existing disparity in the literature. This work was funded by the EC, Framework Programme 6 via the LIPGENE project (FOOD-CT-2003-505944).
Resumo:
The present study was designed to examine whether the type of fat ingested in an initial test meal influences the response and density distribution of dietary-derived lipoproteins in the Svedberg flotation rate (Sf)>400, Sf 60 - 400 and Sf 20 - 60 lipoprotein fractions. A single-blind randomized within-subject crossover design was used to study the effects of palm oil, safflower oil, a mixture of fish and safflower oil, and olive oil on postprandial apolipoprotein (apo) B-48, retinyl ester and triacylglycerol responses in each lipoprotein fraction following an initial test meal containing one of the oils and a second standardized test meal. For all dietary oils, late postprandial (300min) concentrations of triacylglycerol and apo B-48 were significantly higher in the Sf 60 - 400 fraction than in the Sf>400 fraction (P<0.02). Significantly greater apo B-48 incremental areas under the curve (IAUCs) were also observed in the Sf 60 - 400 fraction than in the Sf>400 fraction following palm oil, safflower oil and olive oil (P<0.04), with a similar non-significant trend for fish/safflower oil. Olive oil resulted in a significantly greater apo B-48 IAUC in the Sf>400 fraction (P<0.02) than did any of the other dietary oils, as well as a tendency for a higher IAUC in the Sf 60 - 400 fraction compared with the palm, safflower and fish/safflower oils. In conclusion, we have found that the majority of intestinally derived lipoproteins present in the circulation following meals enriched with saturated, polyunsaturated or monounsaturated fatty acids are of the density and size of small chylomicrons and chylomicron remnants. Olive oil resulted in a greater apo B-48 response compared with the other dietary oils following sequential test meals, suggesting the formation of a greater number of small (Sf 60 - 400) and large (Sf>400) apo B-48-containing lipoproteins in response to this dietary oil.
Resumo:
Background: Calpain-10 protein (intracellular Ca2+-dependent cysteine protease) may play a role in glucose metabolism, pancreatic β cell function, and regulation of thermogenesis. Several CAPN10 polymorphic sites have been studied for their potential use as risk markers for type 2 diabetes and the metabolic syndrome (MetS). Fatty acids are key metabolic regulators that may interact with genetic factors and influence glucose metabolism. Objective: The objective was to examine whether the genetic variability at the CAPN10 gene locus is associated with the degree of insulin resistance and plasma fatty acid concentrations in subjects with MetS. Design: The insulin sensitivity index, glucose effectiveness, insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR)], insulin secretion (disposition index, acute insulin response, and HOMA of β cell function), plasma fatty acid composition, and 5 CAPN10 single nucleotide polymorphisms (SNPs) were determined in a cross-sectional analysis of 452 subjects with MetS participating in the LIPGENE dietary intervention cohort. Results: The rs2953171 SNP interacted with plasma total saturated fatty acid (SFA) concentrations, which were significantly associated with insulin sensitivity (P < 0.031 for fasting insulin, P < 0.028 for HOMA-IR, and P < 0.012 for glucose effectiveness). The G/G genotype was associated with lower fasting insulin concentrations, lower HOMA-IR, and higher glucose effectiveness in subjects with low SFA concentrations (below the median) than in subjects with the minor A allele (G/A and A/A). In contrast, subjects with the G/G allele with the highest SFA concentrations (above the median) had higher fasting insulin and HOMA-IR values and lower glucose effectiveness than did subjects with the A allele. Conclusion: The rs2953171 polymorphism at the CAPN10 gene locus may influence insulin sensitivity by interacting with the plasma fatty acid composition in subjects with MetS. This trial was registered at clinicaltrials.gov as NCT00429195.
Resumo:
Purpose of review: Vascular function is recognized as an early and integrative marker of cardiovascular disease. While there is consistent evidence that the quantity of dietary fat has significant effects on vascular function, the differential effects of individual fatty acids is less clear. This review summarizes recent evidence from randomly controlled dietary studies on the impact of dietary fatty acids on vascular function, as determined by flow-mediated dilatation (FMD). Recent findings: Critical appraisal is given to five intervention studies (one acute, four chronic) which examined the impact of long-chain n-3 polyunsaturated fatty acid [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] on FMD. In the acute setting, a high dose of long-chain n-3 polyunsaturated fatty acid (4.9 g per 70 kg man) improved postprandial FMD significantly, compared with a saturated fatty acid-rich meal in healthy individuals. In longer-term studies, there was limited evidence for a significant effect of EPA/DHA on FMD in diseased groups. Summary: The strongest evidence for the benefits of EPA/DHA on vascular function is in the postprandial state. More evidence from randomly controlled intervention trials with foods will be required to substantiate the long-term effects of EPA/DHA, to inform public health and clinical recommendations.
Resumo:
In most Western countries, saturated fatty acid (SFA) intake exceeds recommended levels, which is considered a risk factor for cardiovascular disease (CVD). As milk and dairy products are major contributors to SFA intake in many countries, recent research has focused on sustainable methods of producing milk with a lower saturated fat concentration by altering dairy cow diets. Human intervention studies have shown that CVD risk can be reduced by consuming dairy products with reduced SFA and increased cis-monounsaturated fatty acid (MUFA) concentrations. This milk fatty acid profile can be achieved by supplementing dairy cow diets with cis-MUFA-rich unsaturated oils. However, rumen exposure of unsaturated oils also leads to enhanced milk trans fatty acid (TFA) concentrations. Because of concerns about the effects of TFA consumption on CVD, feeding strategies that increase MUFA concentrations in milk without concomitant increases in TFA concentration are preferred by milk processors. In an attempt to limit TFA production and increase the replacement of SFA by cis-MUFA, a preparation of rumen-protected unsaturated oils was developed using saponification with calcium salts. Four multiparous Holstein-Friesian cows in mid-late lactation were used in a 4 × 4 Latin square design with 21-d periods to investigate the effect of incremental dietary inclusion of a calcium salt of cis-MUFA product (Ca-MUFA; 20, 40, and 60 g/kg of dry matter of a maize silage-based diet), on milk production, composition, and fatty acid concentration. Increasing Ca-MUFA inclusion reduced dry matter intake linearly, but no change was observed in estimated ME intake. No change in milk yield was noted, but milk fat and protein concentrations were linearly reduced. Supplementation with Ca-MUFA resulted in a linear reduction in total SFA (from 71 to 52 g/100 g of fatty acids for control and 60 g/kg of dry matter diets, respectively). In addition, concentrations of both cis- and trans-MUFA were increased with Ca-MUFA inclusion, and increases in other biohydrogenation intermediates in milk fat were also observed. The Ca-MUFA supplement was very effective at reducing milk SFA concentration and increasing cis-MUFA concentrations without incurring any negative effects on milk and milk component yields. However, reduced milk fat and protein concentrations, together with increases in milk TFA concentrations, suggest partial dissociation of the calcium salts in the rumen
Resumo:
Dairy intake, despite its high saturated fatty acid (SFA) content, is associated with a lower risk of cardiovascular disease and diabetes. This in vitro study determined the effect of individual fatty acids (FA) found in dairy, and FA mixtures representative of a high SFA and a low SFA dairy lipid on markers of endothelial function in healthy and type II diabetic aortic endothelial cells.
Resumo:
Background: We have previously demonstrated that carrying the apolipoprotein (apo) E epsilon 4 (E4+) genotype disrupts omega-3 fatty acids (n − 3 PUFA) metabolism. Here we hypothesise that the postprandial clearance of n − 3 PUFA from the circulation is faster in E4+ compared to non-carriers (E4−). The objective of the study was to investigate the fasted and postprandial fatty acid (FA) profile of triacylglycerol-rich lipoprotein (TRL) fractions: Sf >400 (predominately chylomicron CM), Sf 60 − 400 (VLDL1), and Sf 20 − 60 (VLDL2) according to APOE genotype. Methods: Postprandial TRL fractions were obtained in 11 E4+ (ε3/ε4) and 12 E4− (ε3/ε3) male from the SATgenε study following high saturated fat diet + 3.45 g/d of docosahexaenoic acid (DHA) for 8-wk. Blood samples were taken at fasting and 5-h after consuming a test-meal representative of the dietary intervention. FA were characterized by gas chromatography. Results: At fasting, there was a 2-fold higher ratio of eicosapentaenoic acid (EPA) to arachidonic acid (P = 0.046) as well as a trend towards higher relative% of EPA (P=0.063) in theSf >400 fraction of E4+. Total n − 3 PUFA in the Sf 60 − 400 and Sf 20 − 60 fractions were not APOE genotype dependant. At 5 h, there was a trend towards a time × genotype interaction (P=0.081) for EPA in theSf >400 fraction. When sub-groups were form based on the level of EPA at baseline within the Sf >400 fraction, postprandial EPA (%) was significantly reduced only in the high-EPA group. EPA at baseline significantly predicted the postprandial response in EPA only in E4+ subjects (R2 = 0.816). Conclusion: Despite the DHA supplement contain very low levels of EPA, E4+ subjects with high EPA at fasting potentially have disrupted postprandial n − 3 PUFA metabolism after receiving a high-dose of DHA. Trial registration: Registered at clinicaltrials.gov/show/NCT01544855.
Resumo:
The purpose of this work was to evaluate the fatty acid composition of the Longissimus muscle from carcasses of Nellore steers fed diets with calcium salts of fatty acids (CSFA) and high moisture corn. Forty eight steers were fed during 70 days four diets containing dry corn (DC), high moisture corn (HM). dry corn plus CSFA (DC-CSFA) or high moisture corn plus CSFA (HM-CSFA). Fatty acid composition of the Longissimus muscle was determined by gas chromatography. Corn type had no effect on the ether extract percentage and in the content of the majority of the fatty acids, although steers fed HMC showed higher levels of polyunsaturated fatty acids and polyunsaturated/saturated ratio. Feeding CSFA increased ether extract percentage but had no effect on total of saturated, unsaturated and saturated: unsaturated ratio. Both high moisture corn and calcium salts of fatty acids increased CIA (cis9, trans11) and total CIA concentrations in intramuscular fat (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Free fatty acids (FFA) are important mediators of proton transport across membranes. However, information concerning the influence of the Structural features of both FFA and the membrane environment on the proton translocation mechanisms across phospholipid membranes is relatively scant. The effects of FFA chain length, unsaturation and membrane composition on proton transport have been addressed in this study by means of electrical measurements in planar lipid bilayers. Proton conductance (G(H)(+)) was calculated from open-circuit voltage and short-circuit current density measurements. We found that cis-unsaturated FFA caused a more pronounced effect on proton transport as compared to Saturated and trans-unsaturated FFA. Cholesterol and cardiolipin decreased membrane leak conductance. Cardiolipin also decreased proton conductance. These effects indicate a dual modulation of protein-independent proton transport by FFA: through a flip-flop mechanism and by modifying a proton diffusional pathway. Moreover the membrane phospholipid composition was shown to importantly affect both processes. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Increased plasma levels of free fatty acids (FFA) occur in states of insulin resistance such as obesity and type 2 diabetes mellitus. These high levels of plasma FFA are proposed to play an important role for the development of insulin resistance but the mechanisms involved are still unclear. This study investigated the effects of saturated and unsaturated FFA on insulin sensitivity in parallel with mitochondrial function. C2C12 myotubes were treated for 24 h with 0.1 mM of saturated (palmitic and stearic) and unsaturated (oleic, linoleic, eicosapentaenoic, and docosahexaenoic) FFA. After this period, basal and insulin-stimulated glucose metabolism and mitochondrial function were evaluated. Saturated palmitic and stearic acids decreased insulin-induced glycogen synthesis, glucose oxidation, and lactate production. Basal glucose oxidation was also reduced. Palmitic and stearic acids impaired mitochondrial function as demonstrated by decrease of both mitochondrial hyperpolarization and ATP generation. These FFA also decreased Akt activation by insulin. As opposed to saturated FFA, unsaturated FFA did not impair glucose metabolism and mitochondrial function. Primary cultures of rat skeletal muscle cells exhibited similar responses to saturated FFA as compared to C2C12 cells. These results show that in muscle cells saturated FFA-induced mitochondrial dysfunction associated with impaired insulin-induced glucose metabolism. J. Cell. Physiol. 222: 187-194, 2010. (C) 2009 Wiley-Liss, Inc.
Resumo:
Equilíbrio líquido-vapor do sistema destilado ácido do óleo de palma-dióxido de carbono a alta pressão. Foi investigado experimentalmente o equilíbrio líquido-vapor para o sistema Destilado Ácido de Óleo de Palma (PFAD)/Dióxido de Carbono, nas temperaturas de 333, 353 e 373 K e pressões de 20, 23, 26 e 29 MPa, usando-se o método estático. Os dados experimentais do sistema pseudo-binário PFAD/CO2 foram correlacionados com a equação de estado de Redlich-Kwong do pacote computacional ASPEN. O modelo reproduz bem os resultados experimentais. A seletividade obtida indica que o CO2 supercrítico é um solvente razoável para a separação em coluna multi-estágio e contínua, do ácido graxo saturado (ácido palmítico) daqueles insaturados (ácido oleico e ácido linoleico) contidos no PFAD.
Resumo:
Normal saturated fatty acid (n-fatty acid) in marine sediments from coastal and pelagic environments were analyzed. The coastal sediments contain both short-chained n-fatty acids with carbon numbers from 12 to 18 and long-chained acids from 22 to 32, whereas the pelagic sediments contain predominantly short-chained acids. The relative abundance of short-chained to long-chained n-fatty acids, expressed by the molar ratio C16/C26, can be an indicator to assess the depositional environment of sedimentary rocks. The ratio of long-chained n-fatty acids (C22-C32) to the total n-fatty acids also has the potential to discriminate sedimentary environments. The indicators based on the n-fatty acids were applied to the Franciscan bedded cherts. The result shows that the bedded cherts had deposited in continuous environments from the pelagic to the coastal. This is in harmony with the same inference based on major, trace and rare earth elements and normal paraffins.
Resumo:
During IODP Expedition 310 (Tahiti Sea Level), drowned Pleistocene-Holocene barrier-reef terraces were drilled on the slope of the volcanic island. The deglacial reef succession typically consists of a coral framework encrusted by coralline algae and later by microbialites; the latter make up < 80% of the rock volume. Lipid biomarkers were analyzed in order to identify organisms involved in reef-microbialite formation at Tahiti, as the genesis of deglacial microbialites and the conditions favoring their formation are not fully understood. Sterols plus saturated and monounsaturated short-chain fatty acids predominantly derived from both marine primary producers (algae) and bacteria comprise 44 wt% of all lipids on average, whereas long-chain fatty acids and long-chain alcohols derived from higher land plants represent an average of only 24 wt%. Bacterially derived mono-O-alkyl glycerol ethers (MAGEs) and branched fatty acids (10-Me-C16:0; iso- and anteiso-C15:0 and -C17:0) are exceptionally abundant in the microbial carbonates (average, 19 wt%) and represent biomarkers of intermediate-to-high specificity for sulfate-reducing bacteria. Both are relatively enriched in 13C compared to eukaryotic lipids. No lipid biomarkers indicative of cyanobacteria were preserved in the microbialites. The abundances of Al, Si, Fe, Mn, Ba, pyroxene, plagioclase, and magnetite reflect strong terrigenous influx with Tahitian basalt as the major source. Chemical weathering of the basalt most likely elevated nutrient levels in the reefs and this fertilization led to an increase in primary production and organic matter formation, boosting heterotrophic sulfate reduction. Based on the observed biomarker patterns, sulfate-reducing bacteria were apparently involved in the formation of microbialites in the coral reefs off Tahiti during the last deglaciation.
Resumo:
Peroxisome proliferator-activated receptor α (PPARα) is a key regulator of lipid homeostasis in hepatocytes and target for fatty acids and hypolipidemic drugs. How these signaling molecules reach the nuclear receptor is not known; however, similarities in ligand specificity suggest the liver fatty acid binding protein (L-FABP) as a possible candidate. In localization studies using laser-scanning microscopy, we show that L-FABP and PPARα colocalize in the nucleus of mouse primary hepatocytes. Furthermore, we demonstrate by pull-down assay and immunocoprecipitation that L-FABP interacts directly with PPARα. In a cell biological approach with the aid of a mammalian two-hybrid system, we provide evidence that L-FABP interacts with PPARα and PPARγ but not with PPARβ and retinoid X receptor-α by protein–protein contacts. In addition, we demonstrate that the observed interaction of both proteins is independent of ligand binding. Final and quantitative proof for L-FABP mediation was obtained in transactivation assays upon incubation of transiently and stably transfected HepG2 cells with saturated, monounsaturated, and polyunsaturated fatty acids as well as with hypolipidemic drugs. With all ligands applied, we observed strict correlation of PPARα and PPARγ transactivation with intracellular concentrations of L-FABP. This correlation constitutes a nucleus-directed signaling by fatty acids and hypolipidemic drugs where L-FABP acts as a cytosolic gateway for these PPARα and PPARγ agonists. Thus, L-FABP and the respective PPARs could serve as targets for nutrients and drugs to affect expression of PPAR-sensitive genes.