943 resultados para SUPEROXIDE ANION
Resumo:
Previous studies have reported that chronic supplementation with shark liver oil (SLO) improves immune response of lymphocyte, macrophage and neutrophil in animal models and humans. In a similar manner, exercise training also stimulates the immune system. However, we are not aware of any study about the association of exercise and SLO supplementation on immune response. Thus, our main goal was to investigate the effect of chronic supplementation with SLO on immune responses of exercise-trained rats. Male Wistar rats were divided into four groups: sedentary with no supplementation (SED, n = 20), sedentary with SLO supplementation (SEDslo, n = 20), exercised (EX, n = 17) and exercised supplemented with SLO (EXslo, n = 19). Rats swam for 6 weeks, 1.5 h/day, in water at 32 +/- A 1A degrees C, with a load of 6.0% body weight attached to the thorax of rat. Animals were killed 48 h after the last exercise session. SLO supplementation did not change phagocytosis, lysosomal volume, superoxide anion and hydrogen peroxide production by peritoneal macrophages and blood neutrophils. Thymus and spleen lymphocyte proliferation were significantly higher in SEDslo, EX, and EXslo groups compared with SED group (P < 0.05). Gut-associated lymphocyte proliferation, on the other hand, was similar between the four experimental groups. Our findings show that SLO and EX indeed are able to increase lymphocyte proliferation, but their association did not induce further stimulation in the adaptive immune response and also did not modify innate immunity.
Resumo:
Methanolic extract powders of acerola, passion fruit and pineapple industrial residues, including pulp, seeds and peel, altogether (except for acerola) devoid of seeds, were screened for antioxidant capacity. The total phenolic contents (TPCs) of the extract powders were compared with their radical-scavenging activities (RSA) against both DPPH(center dot) and superoxide anion (O(2)(center dot-)) radicals, and their protective effect against liposome peroxidation, triggered by peroxyl radical. Lipid peroxidation was followed by the fluorescence decay of the probe, 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid (C(11)-BODIPY(581/591)). The TPCs of acerola, passion fruit and pineapple extract powders were (94.6 +/- 7.4); (41.2 +/- 4.2) and (9.1 +/- 1.3) mg of gallic acid equivalents g(-1) of dry extract, respectively. Acerola showed the best RSA-DPPH(center dot) scores, whereas passion fruit was more protective on the RSA-O(2)(center dot-) system. Together with the protective effects against lipid peroxidation (rate of BODIPY decay) which, were similar for acerola and passion fruit extracts, these data suggest that the methanolic extracts of acerola and passion fruit residues may be useful as antioxidant supplements, particularly the acerola extract, due to its high phenolic content. (C) 2008 Elsevier Ltd. All rights reserved
Resumo:
Investigation of the bioactive crude extract from the sponge Plakortis angulospiculatus from Brazil led to the isolation of plakortenone (1) as a new polyketide, along with five known polyketides (2-6) previously isolated from other Plakortis sponges. The known polyketides were tested in antileishmanial, antitrypanosomal, antineuroinflammatory, and cytotoxicity assays. The results show that plakortide P (3) is a potent antiparasitic compound, against both Leishmania chagasi and Trypanosona cruzi, and exhibited antineuroinflammatory activity. The known polyketides 2-6 were tested for cytotoxicity against four human cancer cell lines, but displayed only moderate cytotoxic activity.
Resumo:
Chitosan is a natural polymer, biodegradable, nontoxic, high molecular weight derived from marine animals, insects and microorganisms. Oligomers of glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) have interesting biological activities, including antitumor effects, antimicrobial activity, antioxidant and others. The alternative proposed by this work was to study the viability of producing chitooligosaccharides using a crude enzymes extract produced by the fungus Metarhizium anisopliae. Hydrolysis of chitosan was carried out at different times, from 10 to 60 minutes to produce chitooligosaccharides with detection and quantification performed by High Performace Liquid Chromatography (HPLC). The evaluation of cytotoxicity of chitosan oligomers was carried out in tumor cells (HepG2 and HeLa) and non-tumor (3T3). The cells were treated for 72 hours with the oligomers and cell viability investigated using the method of MTT. The production of chitosan oligomers was higher for 10 minutes of hydrolysis, with pentamers concentration of 0.15 mg/mL, but the hexamers, the molecules showing greater interest in biological properties, were observed only with 30 minutes of hydrolysis with a concentration of 0.004 mg/mL. A study to evaluate the biological activities of COS including cytotoxicity in tumor and normal cells and various tests in vitro antioxidant activity of pure chitosan oligomers and the mixture of oligomers produced by the crude enzyme was performed. Moreover, the compound with the highest cytotoxicity among the oligomers was pure glucosamine, with IC50 values of 0.30; 0.49; 0.44 mg/mL for HepG2 cells, HeLa and 3T3, respectively. Superoxide anion scavenging was the mainly antioxidant activity showed by the COS and oligomers. This activity was also depending on the oligomer composition in the chitosan hydrolysates. The oligomers produced by hydrolysis for 20 minutes was analyzed for the ability to inhibit tumor cells showing inhibition of proliferation only in HeLa cells, did not show any effect in HepG2 cells and fibroblast cells (3T3)
Resumo:
There is abundant evidence that reactive oxygen species are implicated in several physiological and pathological processes. To protect biological targets from oxidative damage. antioxidants must react with radicals and other reactive species faster than biological substrates do. The aim of the present study was to determine the in vitro antioxidant activity of aqueous extracts from leaves of Bauhinia forficata Link (Fabaceae - Caesalpinioideae) and Cissus sicyoides L. (Vitaceae) (two medicinal plants used popularly in the control of diabetes mellitus), using several different assay systems, namely, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) decolorization. superoxide anion radical (O-2 center dot-) scavenging and myeloperoxidase (MPO) activity. In the ABTS assay for total antioxidant activity, B. forficata showed IC50 8.00 +/- 0.07 mu g/mL, while C. sicyoides showed IC50 13.0 +/- 0.2 mu g/mL. However, the extract of C. sicyoides had a stronger effect on O-2 center dot- (IC50 60.0 +/- 2.3 mu p/mL) than the extract of B. forficata (IC50 90.0 +/- 4.4 mu g/mL). B. forficata also had a stronger inhibitory effect on MPO activity, as measured by guaiacol oxidation, than C. sicyoides. These results indicate that aqueous extracts of leaves of B. forficata and C. sicyoides are a potential source of natural antioxidants and may be helpful in the prevention of diabetic complications associated with oxidative stress.
Resumo:
Activated phagocytes oxidize the hormone melatonin to N-1-acethyl-N-2-formyl-5-methoxykynuramine (AFMK) in a superoxide anion- and myeloperoxidase-dependent reaction. We examined the effect of melatonin, AFMK and its deformylated-product N-acetyl-5-methoxykynuramine (AMK) on the phagocytosis, the microbicidal activity and the production of hypochlorous acid by neutrophils. Neither neutrophil and bacteria viability nor phagocytosis were affected by melatonin, AFMK or AMK. However these compounds affected the killing of Staphylococcus aureus. After 60 min of incubation, the percentage of viable bacteria inside the neutrophil increased to 76% in the presence of 1 mM of melatonin, 34% in the presence of AFMK and 73% in the presence of AMK. The sole inhibition of HOCl formation, expected in the presence of myeloperoxidase substrates, was not sufficient to explain the inhibition of the killing activity. Melatonin caused an almost complete inhibition of HOCl formation at concentrations of up to 0.05 mM. Although less effective, AMK also inhibited the formation of HOCl However, AFMK had no effect on the production of HOCl These findings corroborate the present view that the killing activity of neutrophils is a complex phenomenon, which involves more than just the production of reactive oxygen species. Furthermore, the action of melatonin and its oxidation products include additional activities beyond their antioxidant property. The impairment of the neutrophils' microbicidal activity caused by melatonin and its oxidation products may have important clinical implications, especially in those cases in which melatonin is pharmacologically administered in patients with infections. (c) 2005 Elsevier SAS. All rights reserved.
Resumo:
Horseradish peroxidase (HRP) is a plant enzyme widely used in biotechnology, including antibody-directed enzyme prodrug therapy (ADEPT). Here, we showed that HRP is able to catalyze the autoxidation of acetylacetone in the absence of hydrogen peroxide. This autoxidation led to generation of methylglyoxal and reactive oxygen species. The production of superoxide anion was evidenced by the effect of superoxide dismutase and by the generation of oxyperoxidase during the enzyme turnover. The HRP has a high specificity for acetylacetone, since the similar beta-dicarbonyls dimedon and acetoacetate were not oxidized. As this enzyme prodrug combination was highly cytotoxic for neutrophils and only requires the presence of a non-human peroxidase and acetylacetone, it might immediately be applied to research on the ADEPT techniques. The acetylacetone could be a starting point for the design of new drugs applied in HRP-related ADEPT techniques. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A chemical and bioactive quality evaluation of phytochemicals content of 10 eggplant lines and three allied species (S. sodomaeum, S. aethiopicum and S. integrifolium) was performed. The eggplant lines were divided into the two subgroups of delphinidin-3-rutinoside (D3R) and nasunin (NAS) typologies, on the basis of the anthocyanin detected in their fruit skin. The allied species had higher glycoalkaloids content, lower soluble solids and PPO activity and absence of anthocyanins compared to the eggplant lines; S. sodomaeum stood out for high phenols content. Orthogonal contrast revealed a higher sugar content and low PPO activity in NAS- compared to D3R-typologies, whereas higher chlorogenic acid and anthocyanin contents were present in D3R-typologies. The main effect of the ripening was a decrease in phenols and in the PPO activity, not evidenced in S. sodomaeum, and an increase of glycoalkaloids in overripe fruits.A good relationship was found between superoxide anion scavenging capacity and chlorogenic acid. This study highlighted the pattern of accumulation, also evidencing variations, of several phytochemicals during the eggplant fruit development and ripening.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Paracoccidioidomycosis, a deep mycosis endemic in Latin America, is a chronic granulomatous disease caused by the fungus Paracoccidioides brasiliensis. Phagocytic cells play a critical role against the fungus and several papers show the effects of activator and suppressive cytokines on macrophage and monocyte functions. However, the studies focusing on polymorphonuclear neutrophils (PMNs) antifungal functions are scarcer. Thus, the objective of the present paper was to assess the capacity of human PMNs to kill virulent P brasiliensis strain in vitro, before and after priming with different cytokines. Moreover, the involvement of oxygen metabolites in this activity was evaluated. Nonactivated cells failed to exhibit antifungal activity. However, when these cells were IFN-gamma, TNF-alpha or GM-CSF activated, a significative fungicidal activity was detected. This process was significantly inhibited when P brasiliensis challenge occurred in presence of catalase (CAT - a scavenger of H2O2) and superoxide dismutase (SOD - a scavenger of superoxide anion). From these results it is concluded that cytokines activation is required for P brasiliensis killing by human PMNs, and that H2O2 and Superoxide anion participate as effectors molecules in this process.
Resumo:
Interleukin-15 is a pro-inflammatory cytokine produced by a wide range of different cell types, especially monocytes and macrophages, in response to infective agents, playing a crucial and modulatory role in innate and adaptive immune response. Infections by intracellular microorganisms such as some bacteria, protozoa and fungi point out the role of IL-15 in the activation of monocytes/macrophages and neutrophils, a process that represents an important defense mechanism in early periods of infection during the development of innate immune response. The aims of the present study were to evaluate the effects of IL-15 on human neutrophil fungicidal activity against a high virulent Paracoccidioides brasiliensis strain ( Pb18) and to verify whether this activity was mediated by oxidative metabolism such as the production of superoxide anion and H2O2 and if it was associated with an alteration of cytokine ( IL-8 and TNF-alpha) levels. Neutrophils from peripheral blood of healthy individuals were incubated in the presence and absence of IL-15 ( 12.5 - 250ng/ml) for 18h, at 37 degrees C, under tension of 5% CO2, then infected with Pb18 for 4h and evaluated for fungicidal activity, production of superoxide anion and H2O2, and quantification of cytokines IL-8 and TNF-a in the supernatant. Preincubation of neutrophils with IL-15 induced a significant increase in the fungicidal activity of such cells in a dose-dependent manner. After activation, there was an increase in the production of superoxide anion and H2O2 by these cells, suggesting participation of such metabolites in fungicidal activity. Catalase inhibits fungicidal activity, confirming the role of H2O2 in fungus killing. However, the levels of TNF-alpha and IL-8 were not modified after incubation with IL-15, which suggests that its role is not mediated by those cytokines. Taken together, results showed that IL-15 had a modulatory effect on human neutrophils infected in vitro with a high virulent strain of P. brasiliensis, which was characterized by an increased fungicidal activity mediated by a dependent mechanism of oxidative metabolism.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)