976 resultados para SUBCUTANEOUS FIBROSIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was undertaken to test whether the structural remodelling of pulmonary parenchyma can be sequentially altered in a model and method that demonstrate the progression of the disease and result in remodelling within the lungs that is typical of idiopathic pulmonary fibrosis. Three groups of mice were studied: (i) animals that received 3-5-di-tert-butyl-4-hydroxytoluene (BHT) and were killed after 2 weeks (early BHT = 9); (ii) animals that received BHT and were killed after 4 weeks (late BHT = 11); (iii) animals that received corn oil solution (control = 10). The mice were placed in a ventilated Plexiglas chamber with a mixture of pure humidified oxygen and compressed air. Lung histological sections underwent haematoxylin-eosin, immunohistochemistry (epithelial, endothelial and immune cells) and specific staining (collagen/elastic fibres) methods for morphometric analysis. When compared with the control group, early BHT and late BHT groups showed significant decrease of type II pneumocytes, lower vascular density in both and higher endothelial activity. CD4 was increased in late BHT compared with early and control groups, while CD8, macrophage and neutrophil cells were more prominent only in early BHT. The collagenous fibre density were significantly higher only in late BHT, whereas elastic fibre content in late BHT was lower than that in control group. We conclude that the BHT experimental model is pathologically very similar to human usual interstitial pneumonia. This feature is important in the identification of animal models of idiopathic pulmonary fibrosis that can accurately reflect the pathogenesis and progression of the human disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to determine the relationship among body weight (BW), body condition score (BCS) and rump fat thickness (RFAT) measured by ultrasonography, and validate the relationship between BCS and RFAT over the time. Two hundred sixty and six Nelore cows had their BW, BCS and RFAT evaluated at five different moments during the production cycle: M1) weaning: M2) parturition, M3) 42 days post-partum; M4) 82 days postpartum and M5) 112 days post-partum. A BCS value was attributed for each cow following a I to 5 points scale. Ultrasonographic images for RFAT measurement were obtained using a 3.5 MHz linear transducer. Images were immediately analyzed as soon as they were formed and frozen. Body condition scores and ultrasound measurements were collected on the same day by a single trained technician. The relationship between BCS and RFAT values was investigated by regression models. The analysis of similarity among the five obtained models was performed using the proc MIXED from SAS and the correlations among variables were analyzed with proc CORR from SAS. The BCS was able to predict RFAT in Nelore cows in all different moments evaluated. Also, it was shown that BCS presented high correlation (r=0.82 to 0.93) and relationship (R(2) = 0.73 to 0.92) with RFAT. However, both BCS and RFAT showed low correlation (r=0.37 to 0.50) and relationship (R(2) = 0.13 to 0.25) with BW. The BCS classification by visual method using a 1 to 5 point scale, was able to predict the RFAT in Nelore cows over the time. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gap junction channels, formed by connexins (Cx), are involved in the maintenance of tissue homeostasis, cell growth, differentiation, and development. Several studies have shown that Cx43 is involved in the control of wound healing in dermal tissue. However, it remains unknown whether Cx43 plays a role in the control of liver fibrogenesis. Our study investigated the roles of Cx43 heterologous deletion on carbon tetrachloride (CCl(4))-induced hepatic fibrosis in mice. We administered CCl(4) to both Cx43-deficient (Cx43(+/-)) and wild-type mice and examined hepatocellular injury and collagen deposition by histological and ultrastructural analyses. Serum biochemical analysis was performed to quantify liver injury. Hepatocyte proliferation was analyzed immunohistochemically. Protein and messenger RNA (mRNA) expression of liver connexins were evaluated using immunohistochemistry as well as immunoblotting analysis and quantitative real-time PCR. We demonstrated that Cx43(+/-) mice developed excessive liver fibrosis compared with wild-type mice after CCl(4)-induced chronic hepatic injury, with thick and irregular collagen fibers. Histopathological evaluation showed that Cx43(+/-) mice present less necroinflammatory lesions in liver parenchyma and consequent reduction of serum aminotransferase activity. Hepatocyte cell proliferation was reduced in Cx43(+/-) mice. There was no difference in Cx32 and Cx26 protein or mRNA expression in fibrotic mice. Protein expression of Cx43 increased in CCl(4)-treated mice, although with aberrant protein location on cytoplasm of perisinusoidal cells. Our results demonstrate that Cx43 plays an important role in the control and regulation of hepatic fibrogenesis. Microsc. Res. Tech. 74:421-429, 2011. (C) 2010 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subcutaneous Ehrlich tumor-bearing mice were treated with in situ inoculation of a P-glucan-rich extract of Agaricus brasiliensis (ATF), which reduced tumor growth. Histopathological analysis showed that the tumor masses of control mice (Ehr) presented giant tumor cells and many mitotic figures whereas the tumor tissue obtained from ATF-treated animals (Ehr-ATF) presented a lower frequency of both mitotic and giant cells, associated with a higher frequency of apoptotic cells than Ehr. Analysis of the lymphoproliferative activity of spleen cells showed that the treatment had a suppressive rather than a stimulatory effect. Spleen cells of the Ehr group produced higher in vitro levels of IL-10 than normal controls and this occurrence was partially avoided by treatment with ATF. Analysis of cytokine production by tumor-infiltrating cells (ELISpot) showed that ATF induced a higher number of IFN-gamma-producing cells at 7 and 14 days as well as reduction of IL-10-secreting cells at the latter time. Confocal microscopy analysis showed higher intensity of labeling of CD4+ and Mac-3+ cells in ATF-treated mice. Analysis of in situ expression of angiogenic growth factors showed a slight decrease of FGF-2 mRNA in Ehr-ATF animals (7th day) but not of VEGF-A or TGF-beta expression. This fraction could not directly lyse either lymphocytes or tumor cells and we speculate that antitumor effect of ATF could be due to induction of a selective migration of immunocompetent cells from the spleen to the tumor site and to the switch of cytokine production. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alendronate is a known inhibitor of root resorption and the development of alendronate paste would enhance its utilization as intracanal medication. Therefore, this study aimed to investigate the biocompatibility of experimental alendronate paste in subcutaneous tissue of rats, for utilization in teeth susceptible to root resorption. The study was conducted on 15 male rats, weighing similar to 180-200 grams. The rats` dorsal regions were submitted to one incision on the median region and, laterally to the incision, the subcutaneous tissue was raised and gently dissected for introduction of two tubes, in each rat. The tubes were sealed at one end with gutta-percha and taken as control. The tubes were filled with experimental alendronate paste. The animals were killed at 7, 15 and 45 days after surgery and the specimens were processed in laboratory. The histological sections were stained with hematoxylin-eosin and analyzed by light microscopy. Scores were assigned to the in. ammatory process and statistically compared by the Tukey test (P < 0.05). Alendronate paste promoted severe inflammation process at 7 days, with statistically significant difference compared to the control (P < 0.05%). However, at 15 days, there was a regression of in. ammation and the presence of connective tissue with collagen fibers, fibroblasts and blood vessels was observed. After 45 days, it was observed the presence of well-organized connective tissue, with collagen fibers and fibroblasts, and few in. ammatory cells. No statistical difference was observed between the control and experimental paste at 15 and 45 days. The experimental alendronate paste was considered biocompatible with subcutaneous tissue of rat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. The aim of this study was to evaluate the biocompatibility of the root canal sealer Epiphany in rat subcutaneous tissues. Study design. Polyethylene tubes were filled with the sealer (I: Epiphany; II: photoactivated Epiphany; III: Epiphany associated with self-etch primer; IV: photoactivated Epiphany associated with primer; and V: control group) and later implanted into 4 different regions of the dorsum of 15 adult male rats (Rattus novergicus, Albinus Wistar). After 7, 21, and 42 days, 5 animals were killed, obtaining 4 samples per group, in addition to the control group, at each analyzed time. Results. In all periods, Epiphany induced a mild inflammatory reaction. However, in group II, in which the primer was not used, extensive necrosis and a moderate to intense inflammatory reaction were observed, mainly after 7 and 21 days. Conclusion. Epiphany sealer appears biocompatible when tested on rat subcutaneous tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The purpose of this study was to evaluate the biocompatibility of the root canal filling system Epiphany/Resilon in connective tissue of rats. Methods: Fifteen rats were used, separated into 3 groups in accordance with its period of death (7, 21, 42 days). Four filled dentin tubes were implanted with the tested materials as follows: ERSP group, Epiphany/Resilon with Self-etch Primer; ER group, Epiphany/Resilon without primer; EG group, Endofill/gutta-percha points; and ET group, empty tube. After 7, 21, and 42 days, animals were killed, obtaining 5 samples per group. A grade from I-IV was used to graduate the inflammatory reaction. Results: Results showed that Epiphany/Resilon (ERSP and ER groups) induced a slight (II) inflammatory reaction after 42 days. However, in ER group, in which the self-etch primer was not applied, severe (IV) to moderate (III) inflammatory reactions were observed between 7 and 21 days. When compared with the EG and ET groups, it was observed that these groups presented tissue reaction ranging from slight (II, 7 and 21 days) to no inflammation (I, 42 days). Conclusions: Epiphany/Resilon root canal filling system presented satisfactory tissue reaction. It was biocompatible when tested in connective tissue of rats. (J Endod 2010;36:110-114)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is a complex disease affecting epithelial ion transport. There are not many diseases like CF that have triggered such intense research activities. The complexity of the disease is due to mutations in the CFTR protein, now known to be a Cl- channel and a regulator of other transport proteins. The various interactions and the large number of disease-causing CFTR mutations is the reason for a variable genotype-phenotype correlation and sometimes unpredictable clinical manifestation. Nevertheless, the research of the past 10 years has resulted in a tremendous increase in knowledge, not only in regard to CFTR but also in regard to molecular interactions and completely new means of ion channel and gene therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The K+ channel KCNQ1 (K(V)LQT1) is a voltage-gated K+ channel, coexpressed with regulatory subunits such as KCNE1 (IsK, mink) or KCNE3, depending on the tissue examined. Here, we investigate regulation and properties of human and rat KCNQ1 and the impact of regulators such as KCNE1 and KCNE3. Because the cystic fibrosis transmembrane conductance regulator (CFTR) has also been suggested to regulate KCNQ1 channels we studied the effects of CFTR on KCNQ1 in Xenopus oocytes, Expression of both human and rat KCNQ1 induced time dependent K+ currents that were sensitive to Ba2+ and 293B. Coexpression with KCNE1 delayed voltage activation, while coexpression with KCNE3 accelerated current activation. KCNQ1 currents were activated by an increase in intracellular cAMP, independent of coexpression with KCNE1 or KCNE3. cAMP dependent activation was abolished in N-terminal truncated hKCNQ1 but was still detectable after deletion of a single PKA phosphorylation motif. In the presence but not in the absence of KCNE1 or KCNE3, K+ currents were activated by the Ca2+ ionophore ionomycin. Coexpression of CFTR with either human or rat KCNQ1 had no impact on regulation of KCNQ1 K+ currents by cAMP but slightly shifted the concentration response curve for 293B. Thus, KCNQ1 expressed in Xenopus oocytes is regulated by cAMP and Ca2+ but is not affected by CFTR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cystic fibrosis transmembrane conductance regulator (CFTR) has been shown previously to be regulated by inhibitory G proteins. In the present study, we demonstrate inhibition of CFTR by alphaG(i2) and alphaG(i1), but not alphaG(0), in Xenopus oocytes. We further examined whether regulators of G protein signaling (RGS) proteins interfere with alphaG(i)-dependent inhibition of CFTR. Activation of CFTR by IBMX and forskolin was attenuated in the presence of alphaG(i2), indicating inhibition of CFTR by alphaG(i2) in Xenopus oocytes. Coexpression of the proteins RGS3 and RGS7 together with CFTR and alphaG(i2) partially recovered activation by IBMX/forskolin. 14-3-3, a protein that is known to interfere with RGS proteins, counteracted the effects of RGS3. These data demonstrate the regulation of CFTR by alphaG(i) in Xenopus oocytes. Because RGS proteins interfere with the G protein-dependent regulation of CFTR, this may offer new potential pathways for pharmacological intervention in cystic fibrosis. (C) 2001 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. More than 1300 different mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis (CF), a disease characterized by deficient epithelial Cl- secretion and enhanced Na+ absorption. The clinical course of the disease is determined by the progressive lung disease. Thus, novel approaches in pharmacotherapy are based primarily on correction of the ion transport defect in the airways. 2. The current therapeutic strategies try to counteract the deficiency in Cl- secretion and the enhanced Na+ absorption. A number of compounds have been identified, such as genistein and xanthine derivatives, which directly activate mutant CFTR. Other compounds may activate alternative Ca2+-activated Cl- channels or basolateral K+ channels, which supply the driving force for Cl- secretion. Apart from that, Na+ channel blockers, such as phenamil and benzamil, are being explored, which counteract the hyperabsorption of NaCl in CF airways. 3. Clinical trials are under way using purinergic compounds such as the P2Y(2) receptor agonist INS365. Activation of P2Y(2) receptors has been found to both activate Cl- secretion and inhibit Na+ absorption. 4. The ultimate goal is to recover Cl- channel activity of mutant CFTR by either enhancing synthesis and expression of the protein or by activating silent CFTR Cl- channels. Strategies combining these drugs with compounds facilitating Cl- secretion and inhibiting Na+ absorption in vivo may have the best chance to counteract the ion transport defect in cystic fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of the CFTR Cl- channel inhibits epithelial Na+ channels (ENaC), according to studies on epithelial cells and overexpressing recombinant cells. Here we demonstrate that ENaC is inhibited during stimulation of the cystic fibrosis trans-membrance conductance regulator (CFTR) in Xenopus oocytes, independent of the experimental set-up and the magnitude of the whole-cell current. Inhibition of ENaC is augmented at higher CFTR Cl- currents. Similar to CFTR, ClC-0 Cl- currents also inhibit ENaC, as well as high extracellular Na+ and Cl- in partially permeabilized oocytes. Thus, inhibition of ENaC is not specific to CFTR and seems to be mediated by Cl-.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poor nutritional status in patients with cystic fibrosis (CF) is associated with severe lung disease, and possible causative factors include inadequate intake, malabsorption, and increased energy requirements. Body cell mass (which can be quantified by measurement of total body potassium) provides an ideal standard for measurements of energy expenditure. The aim of this study was to compare resting energy expenditure (REE) in patients with CF with both predicted values and age-matched healthy children and to determine whether REE was related to either nutritional status or pulmonary function. REE was measured by indirect calorimetry and body cell mass by scanning with total body potassium in 30 patients with CF(12 male, mean age = 13.07 +/- 0.55 y) and 18 healthy children (six male, mean age = 12.56 +/- 1.25 y). Nutritional status was expressed as a percentage of predicted total body potassium; Lung function was measured in the CF group by spirometry and expressed as the percentage of predicted forced expiratory volume in 1 s. Mean REE was significantly increased in the patients with CF compared with healthy children (119.3 +/- 3.1% predicted versus 103.6 +/- 5% predicted, P < 0.001) and, using multiple regression techniques, REE for total body potassium was significantly increased in patients with CF (P = 0.0001). There was no relation between REE and nutritional status or pulmonary disease status in the CF group. In conclusion, REE is increased in children and adolescents with CF but is not directly related to nutritional status or pulmonary disease. Nutrition 2001;17:22-25. (C)Elsevier Science Inc. 2001.