976 resultados para SPIN STRUCTURE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The one-step preparation of highly anisotropic polymer semiconductor thin films directly from solution is demonstrated. The conjugated polymer poly(3-hexylthiophene) (P3HT) as well as P3HT:fullerene bulk-heterojunction blends can be spin-coated from a mixture of the crystallizable solvent 1,3,5-trichlorobenzene (TCB) and a second carrier solvent such as chlorobenzene. Solidification is initiated by growth of macroscopic TCB spherulites followed by epitaxial crystallization of P3HT on TCB crystals. Subsequent sublimation of TCB leaves behind a replica of the original TCB spherulites. Thus, highly ordered thin films are obtained, which feature square-centimeter-sized domains that are composed of one spherulite-like structure each. A combination of optical microscopy and polarized photoluminescence spectroscopy reveals radial alignment of the polymer backbone in case of P3HT, whereas P3HT:fullerene blends display a tangential orientation with respect to the center of spherulite-like structures. Moreover, grazing-incidence wide-angle X-ray scattering reveals an increased relative degree of crystallinity and predominantly flat-on conformation of P3HT crystallites in the blend. The use of other processing methods such as dip-coating is also feasible and offers uniaxial orientation of the macromolecule. Finally, the applicability of this method to a variety of other semi-crystalline conjugated polymer systems is established. Those include other poly(3-alkylthiophene)s, two polyfluorenes, the low band-gap polymer PCPDTBT, a diketopyrrolopyrrole (DPP) small molecule as well as a number of polymer:fullerene and polymer:polymer blends. Macroscopic spherulite-like structures of the conjugated polymer poly(3-hexylthiophene) (P3HT) grow directly during spin-coating. This is achieved by processing P3HT or P3HT:fullerene bulk heterojunction blends from a mixture of the crystallizable solvent 1,3,5-trichlorobenzene and a second carrier solvent such as chlorobenzene. Epitaxial growth of the polymer on solidified solvent crystals gives rise to circular-symmetric, spherulite-like structures that feature a high degree of anisotropy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the blend morphology and performance of bulk heterojunction organic photovoltaic devices comprising the donor polymer, pDPP-TNT (poly{3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1, 4-dione-alt-naphthalene}) and the fullerene acceptor, [70]PCBM ([6,6]-phenyl C71-butyric acid methyl ester). The blend morphology is heavily dependent upon the solvent system used in the fabrication of thin films. Thin films spin-coated from chloroform possess a cobblestone-like morphology, consisting of thick, round-shaped [70]PCBM-rich mounds separated by thin polymer-rich valleys. The size of the [70]PCBM domains is found to depend on the overall film thickness. Thin films spin-coated from a chloroform:dichlorobenzene mixed solvent system are smooth and consist of a network of pDPP-TNT nanofibers embedded in a [70]PCBM-rich matrix. Rinsing the films in hexane selectively removes [70]PCBM and allows for analysis of domain size and purity. It also provides a means for investigating exciton dissociation efficiency through relative photoluminescence yield measurements. Devices fabricated from chloroform solutions show much poorer performance than the devices fabricated from the mixed solvent system; this disparity in performance is seen to be more pronounced with increasing film thickness. The primary cause for the improved performance of devices fabricated from mixed solvents is attributed to the greater donor-acceptor interfacial area and resulting greater capacity for charge carrier generation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The metal borides, in particular the diborides and hexaborides, contain stoichiometric forms that include insulators, semiconductors and superconductors. In addition, their end-member structures have high symmetry and two atoms although, in general, substitution(s) of multi-valent ions into the metal site occurs consistent with Vegard’s law. These characteristics allow for fundamental comparison of important physical properties such as superconductivity and insulation within a relatively simple structure type. Our early work1,2 has demonstrated this for the hexaborides and this work compares similar attributes across a broader suite of boride structures. In all cases, theoretical calculations are referenced to structures determined via high resolution neutron or X-ray diffraction experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphitic like layered materials exhibit intriguing electronic structures and thus the search for new types of two-dimensional (2D) monolayer materials is of great interest for developing novel nano-devices. By using density functional theory (DFT) method, here we for the first time investigate the structure, stability, electronic and optical properties of monolayer lead iodide (PbI2). The stability of PbI2 monolayer is first confirmed by phonon dispersion calculation. Compared to the calculation using generalized gradient approximation, screened hybrid functional and spin–orbit coupling effects can not only predicts an accurate bandgap (2.63 eV), but also the correct position of valence and conduction band edges. The biaxial strain can tune its bandgap size in a wide range from 1 eV to 3 eV, which can be understood by the strain induced uniformly change of electric field between Pb and I atomic layer. The calculated imaginary part of the dielectric function of 2D graphene/PbI2 van der Waals type hetero-structure shows significant red shift of absorption edge compared to that of a pure monolayer PbI2. Our findings highlight a new interesting 2D material with potential applications in nanoelectronics and optoelectronics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A quantum-spin-Hall (QSH) state was achieved experimentally, albeit at a low critical temperature because of the narrow band gap of the bulk material. Twodimensional topological insulators are critically important for realizing novel topological applications. Using density functional theory (DFT), we demonstrated that hydrogenated GaBi bilayers (HGaBi) form a stable topological insulator with a large nontrivial band gap of 0.320 eV, based on the state-of-the-art hybrid functional method, which is implementable for achieving QSH states at room temperature. The nontrivial topological property of the HGaBi lattice can also be confirmed from the appearance of gapless edge states in the nanoribbon structure. Our results provide a versatile platform for hosting nontrivial topological states usable for important nanoelectronic device applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spin-state equilibria in the whole set of LCoO3 (where L stands for a rare-earth metal or Y) have been investigated with the use of 59Co NMR as a probe for the polycrystalline samples (except Ce) in the temperature interval 110-550 K and frequency range 3- 11.6 MHz. Besides confirming the coexistence of the high-spin—low-spin state in this temperature range, a quadrupolar interaction of ∼0.1 -0.5 MHz has been detected for the first time from 59Co NMR. The NMR line shape is found to depend strongly on the relative magnitude of the magnetic and quadrupolar interactions present. Analysis of the powder pattern reveals two basically different types of transferred hyperfine interaction between the lighter and heavier members of the rare-earth series. The first three members of the lighter rare-earth metals La, Pr (rhombohedral), and Nd (tetragonal), exhibit second-order quadrupolar interaction with a zero-asymmetry parameter at lower temperatures. Above a critical temperature TS (dependent on the size of the rare-earth ion), the quadrupolar interaction becomes temperature dependent and eventually gives rise to a first-order interaction thus indicating a possible second-order phase change. Sm and Eu (orthorhombic) exhibit also a second-order quadrupolar interaction with a nonzero asymmetry parameter ((η∼0.47)) at 300 K, while the orthorhombic second-half members (Dy,..., Lu and Y) exhibit first-order quadrupolar interaction at all temperatures. Normal paramagnetic behavior, i.e., a linear variation of Kiso with T-1, has been observed in the heavier rare-earth cobaltites (Er,..., Lu and Y), whereas an anomalous variation has been observed in (La,..., Nd)CoO3. Thus, Kiso increases with increasing temperature in PrCoO3 and NdCoO3. These observations corroborate the model of the spin-state equilibria in LCoO3 originally proposed by Raccah and Goodenough. A high-spin—low-spin ratio, r=1, can be stabilized in the perovskite structure by a cooperative displacement of the oxygen atoms from the high-spin towards the low-spin cation. Where this ordering into high- and low-spin sublattices occurs at r=1, one can anticipate equivalent displacement of all near-neighbor oxygen atoms towards a low-spin cobalt ion. Thus the heavier LCoO3 exhibits a small temperature-independent first-order quadrupolar interaction. Where r<1, the high- and low-spin states are disordered, giving rise to a temperature-dependent second-order quadrupolar interaction with an anomalous Kiso for the lighter LCoO3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of quaternary metal sulfides of the general formula La3MM′S7 (M = Mn, Fe, Co; M′ = Al and M = Mg, Mn, Fe, Co, Ni; M′ = Fe) consisting of linear chains of face shared MS6 octahedra and isolated M′S4 tetrahedra has been prepared and studied. The aluminium compounds La3MAlS7 (M = Mn, Fe, Co) exhibit linear chain antiferromagnetism. Magnetic behavior of other La3MFeS7 sulfides has been examined in detail. The magnetic susceptibility of La3MgFeS7 shows that tetrahedral site Fe3+ undergoes a transition from Image to S = 2 spin state around 150 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two new three-dimensional metal-organic frameworks (MOFs) [Mn-2(mu(3)-OH)(H2O)(2)(BTC)]-2 H2O, I, and [NaMn(BTC)], II (BTC=1,2,4-benzenetricarboxylate = trimellitate) were synthesized and their structures determined by single-crystal X-ray diffraction (XRD). In I, the Mn-4 cluster, [Mn-4(mu(5)-OH)(2)(H2O)(4)O-12], is connected with eight trimellitate anions and each trimellitate anion connects to four different Mn-4 clusters, resulting in a fluorite-like structure. In II, the Mn2O8 dimer is connected with two Na+ ions through carboxylate oxygen to form mixed-metal distorted Kagome-related two-dimensional -M-O-M- layers, which are pillared by the trimellitate anions forming the three-dimensional structure. The extra-framework water molecules in I are reversibly adsorbed and are also corroborated by powder XRD studies. The formation of octameric water clusters involving free and coordinated water molecules appears to be new. Interesting magnetic behavior has been observed for both compounds. Electron spin resonance (ESR) studies indicate a broadening of the signal below the ordering temperature and appear to support the findings of the magnetic studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NMR studies of methyldichlorophosphine have been undertaken in the nematic phase of mixed liquid crystals of opposite diamagnetic anisotropies. The rα structure is derived. The proton chemical-shift anisotropy has been determined from the studies without the use of a reference compound and without a change of experimental conditions. It is shown that the molecule orients in the liquid crystal with positive diamagnetic anisotropy in such a way that the C3 symmetry axis of the CH3P moiety is preferentially aligned perpendicular to the direction of the magnetic field, unlike other similar systems. This is interpreted in terms of the formation of a weak solvent-solute molecular complex. The heteronuclear indirect spin-spin coupling constants are determined. The sign of the two-bond JPH is found to be positive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estimation of secondary structure in polypeptides is important for studying their structure, folding and dynamics. In NMR spectroscopy, such information is generally obtained after sequence specific resonance assignments are completed. We present here a new methodology for assignment of secondary structure type to spin systems in proteins directly from NMR spectra, without prior knowledge of resonance assignments. The methodology, named Combination of Shifts for Secondary Structure Identification in Proteins (CSSI-PRO), involves detection of specific linear combination of backbone H-1(alpha) and C-13' chemical shifts in a two-dimensional (2D) NMR experiment based on G-matrix Fourier transform (GFT) NMR spectroscopy. Such linear combinations of shifts facilitate editing of residues belonging to alpha-helical/beta-strand regions into distinct spectral regions nearly independent of the amino acid type, thereby allowing the estimation of overall secondary structure content of the protein. Comparison of the predicted secondary structure content with those estimated based on their respective 3D structures and/or the method of Chemical Shift Index for 237 proteins gives a correlation of more than 90% and an overall rmsd of 7.0%, which is comparable to other biophysical techniques used for structural characterization of proteins. Taken together, this methodology has a wide range of applications in NMR spectroscopy such as rapid protein structure determination, monitoring conformational changes in protein-folding/ligand-binding studies and automated resonance assignment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we report the synthesis and self assembly of various sizes of ZnO nanocrystals. While the crystal structure and the quantum confinement of nanocrystals were mainly characterized using XRD and UV absorption spectra, the self assembly and long range ordering were studied using scanning tunneling microscopy after spin casting the nanocrystal film on the highly oriented pyrolytic graphite surface. We observe self assembly of these nanocrystals over large areas making them ideal candidates for various potential applications. Further, the electronic structure of the individual dots is obtained from the current-voltage characteristics of the dots using scanning tunneling spectroscopy and compared with the density of states obtained from the tight binding calculations. We observe an excellent agreement with the experimentally obtained local density of states and the theoretically calculated density of states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The efforts of combining quantum theory with general relativity have been great and marked by several successes. One field where progress has lately been made is the study of noncommutative quantum field theories that arise as a low energy limit in certain string theories. The idea of noncommutativity comes naturally when combining these two extremes and has profound implications on results widely accepted in traditional, commutative, theories. In this work I review the status of one of the most important connections in physics, the spin-statistics relation. The relation is deeply ingrained in our reality in that it gives us the structure for the periodic table and is of crucial importance for the stability of all matter. The dramatic effects of noncommutativity of space-time coordinates, mainly the loss of Lorentz invariance, call the spin-statistics relation into question. The spin-statistics theorem is first presented in its traditional setting, giving a clarifying proof starting from minimal requirements. Next the notion of noncommutativity is introduced and its implications studied. The discussion is essentially based on twisted Poincaré symmetry, the space-time symmetry of noncommutative quantum field theory. The controversial issue of microcausality in noncommutative quantum field theory is settled by showing for the first time that the light wedge microcausality condition is compatible with the twisted Poincaré symmetry. The spin-statistics relation is considered both from the point of view of braided statistics, and in the traditional Lagrangian formulation of Pauli, with the conclusion that Pauli's age-old theorem stands even this test so dramatic for the whole structure of space-time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The possibility of observing gravitational spin precession due to spin-orbit coupling in a binary pulsar system is considered. An analysis is presented which can aid in delineating the relevant physical effects from pulse-structure data. In this analysis, it is assumed that the pulsar radiation emanates from a cone whose axis is tilted with respect to the axis of rotation. It is found that the time-averaged pulse width and polarization sweep vary periodically with time and that this variation has a periodicity of the order of the spin-precession frequency averaged over a complete revolution. It is concluded that for an orbital period of about 180 years, it suffices to measure polarization data with an accuracy of a few parts in 100 over a period of six months to a year in order to uncover the effects of spin precession. The consistency of the analysis is checked, and the calculations are applied to a recently discovered binary pulsar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study of the hyperfine interaction in the ESR of coupled Cu---Cu pairs in single crystals of copper diethyldithiocarbamate as a function of temperature has shown distinct differences in the hyperfine structure in the two fine-structure transitions at 20 K; the spectrum does not have the usual binomial hyperfine pattern for the fine-structure transition of the low field in contrast to that of the high field. The details of the structure of both fine-structure transitions in the 20-K spectrum can be explained by recognizing the fact that the mixing of the nuclear spin states caused by the anisotropic hyperfine interaction affects the electron spin states |+1 and |−1 differently. The anomalous hyperfine structure is found to become symmetric at 77 and 300 K. It is proposed that the reason for this lies in the dynamics of spin-lattice interaction, which limits the lifetime of the spin states in each of the electronic levels |−1 , |0 , and |+1 . The estimate of spin-lattice relaxation time in the temperature range where the changes are observed agrees with those indicated by other studies. The model proposed here for the hyperfine interaction of pairs in the electronic triplet state is of general validity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single crystal electron spin resonance studies of Cu2+ doped ferroelectric ammonium sulphate ((NH4)2SO4, Tc = 223 K) are reported at 300 and 77 K. The Cu2+ ion is found to enter the lattice interstitially with a trigonal bipyramidal coordination. Proton superhyperfine interaction is found for magnetic field directions close to the a-axis. Changes are observed in the 77 K recordings indicating a distortion of the trigonal bipyramid consistent with crystal structure data. An increase of the proton superhyperfine constant in the ferroelectric phase is indicative of stronger hydrogen bonding. The Cu2+ ion doped as an impurity in a trigonal bipyramid environment in a diamagnetic host lattice is reported for the first time.