953 resultados para SLA-RT-PCR
Resumo:
This study compared the results of reverse transcription-polymerase chain reaction (RT-PCR) and traditional virus isolation on cell culture in detection of viral haemorrhagic septicaemia virus (VHSV) and infectious haematopoietic necrosis virus (IHNV). RT-PCR was used for 172 tissue sample pools (total of 859 fish) originating from a field survey on the occurrence of VHSV and IHNV in farmed and wild salmonids in Switzerland. These samples represented all sites with fish that were either identified as virus-positive by means of virus isolation (three sites, four positive tissue sample pools) and/or demonstrated positive anti-VHSV-antibody titres (83 sites, 121 positive blood samples) in a serum plaque neutralization test (SPNT). The RT-PCR technique confirmed the four VHSV-positive tissue sample pools detected by virus isolation and additionally identified one VHSV-positive sample that showed positive anti-VHSV-AB titres, but was negative in virus isolation. With IHNV, RT-PCR detected two positive samples not identified by virus isolation while in these fish the SPNT result had been questionable. One of the IHNV-positive samples represents the first detection of IHNV-RNA in wild brown trout in Switzerland. Compared to SPNT, the RT-PCR method detected, as with virus isolation, a much lower number of positive cases; reasons for this discrepancy are discussed. Our results indicate that RT-PCR can not only be successfully applied in field surveys, but may also be slightly more sensitive than virus isolation. However, in a titration experiment under laboratory conditions, the sensitivity of RT-PCR was not significantly higher when compared with virus isolation.
Resumo:
The causative agents of rabies are single-stranded, negative-sense RNA viruses in the genus Lyssavirus of Rhabdoviridae, consisting of twelve classified and three as yet unclassified species including classical rabies virus (RABV). Highly neurotropic RABV causes rapidly progressive encephalomyelitis with nearly invariable fatal outcome. Rapid and reliable diagnosis of rabies is highly relevant for public and veterinary health. Due to growing variety of the genus Lyssavirus observed, the development of suitable molecular assays for diagnosis and differentiation is challenging. This work focused on the establishment of a suitable real-time RT-PCR technique for rabies diagnosis as a complement to fluorescent antibody test and rabies tissue culture infection test as gold standard for diagnosis and confirmation. The real-time RT-PCR was adapted with the goal to detect the whole spectrum of lyssavirus species, for nine of which synthesized DNA fragments were used. For the detection of species, seven probes were developed. Serial dilutions of the rabies virus strain CVS-11 showed a 100-fold higher sensitivity of real-time PCR compared to heminested RT-PCR. Using a panel of thirty-one lyssaviruses representing four species, the suitability of the protocol could be shown. Phylogenetic analysis of the sequences obtained by heminested PCR allowed correct classification of all viruses used.
Resumo:
Equine Influenza ist eine durch Influenza A-Viren verursachte, kontagiöse Respirationserkrankung beim Pferd. In dieser Arbeit wurde eine real-time RT-PCR in einem konservierten Abschnitt des Matrix-Segments des viralen Genoms für die schnelle und sensitive Diagnose von equinen Influenzaviren (EIV) und je eine RT-PCR Methode im Matrix- und im HA-Segment für die molekular-epidemiologische Charakterisierung der Viren entwickelt. Die Primer der real-time RT-PCR sind zu 99.4% der bekannten EIV-Sequenzen und zu 97.7% aller Influenza A-Sequenzen homolog. Die Homologie der Minor Groove Binder (MGB)-Sonde lag bei 99.3% und 99.6%. Diese hohen Werte ermöglichen die Anwendung des Assays für Influenzaviren bei anderen Spezies. Die diagnostische Eignung der Methode wurde mit Hilfe von 20 equinen, 11 porcinen sowie 2 aviären Proben verifiziert. Eine hohe Spezifität für Influenzaviren wurde experimentell und mittels Software-Simulation gezeigt. Die analytische Sensitivität des Tests lag bei 102–103 RNA-Kopien und 100–101 DNA-Kopien, was den Virusnachweis auch bei geringer Virusausscheidung ermöglicht. Alle amplifizierten EIV-Sequenzen konnten phylogenetisch den bekannten Linien zugeordnet werden.
Resumo:
The potential for large-scale use of a sensitive real time reverse transcription polymerase chain reaction (RT-PCR) assay was evaluated for the detection of Tomato spotted wilt virus (TSWV) in single and bulked leaf samples by comparing its sensitivity with that of DAS-ELISA. Using total RNA extracted with RNeasy (R) or leaf soak methods, real time RT-PCR detected TSWV in all infected samples collected from 16 horticultural crop species (including flowers, herbs and vegetables), two arable crop species, and four weed species by both assays. In samples in which DAS-ELISA had previously detected TSWV, real time RT-PCR was effective at detecting it in leaf tissues of all 22 plant species tested at a wide range of concentrations. Bulk samples required more robust and extensive extraction methods with real time RT-PCR, but it generally detected one infected sample in 1000 uninfected ones. By contrast, ELISA was less sensitive when used to test bulked samples, once detecting up to I infected in 800 samples with pepper but never detecting more than I infected in 200 samples in tomato and lettuce. It was also less reliable than real time RT-PCR when used to test samples from parts of the leaf where the virus concentration was low. The genetic variability among Australian isolates of TSWV was small. Direct sequencing of a 587 bp region of the nucleoprotein gene (S RNA) of 29 isolates from diverse crops and geographical locations yielded a maximum of only 4.3% nucleotide sequence difference. Phylogenetic analysis revealed no obvious groupings of isolates according to geographic origin or host species. TSWV isolates, that break TSWV resistance genes in tomato or pepper did not differ significantly in the N gene region studied, indicating that a different region of the virus genome is responsible for this trait.
Resumo:
Antigenic variation in Plasmodium falciparum erythrocyte membrane protein 1, caused by a switch in transcription of the encoding var gene, is an important feature of malaria. In this study, we quantified the relative abundance of var gene transcripts present in P. falciparum parasite clones using real-time reverse transcription-polymerase chain reaction (RT-PCR) and conventional RT-PCR combined with cloning and sequencing, with the aim of directly comparing the results obtained. When there was sufficient abundance of RNA for the real-time RT-PCR assay to be operating within the region of good reproducibility, RT-PCR and real-time RT-PCR tended to identify the same dominant transcript, although some transcript-specific issues were identified. When there were differences in the estimated relative amounts of minor transcripts, the RT-PCR assay tended to produce higher estimates than real-time RT-PCR. These results provide valuable information comparing RT-PCR and real-time RT-PCR analysis of samples with small quantities of RNA as might be expected in the analysis of field or clinical samples.
Resumo:
Enterovirus 71 (EV71) is one of the main causative agents of hand, foot and mouth disease (HFMD) in young children. Infections caused by EV71 could lead to many complications, ranging from brainstem encephalitis to pulmonary oedema, resulting in high mortality. Thus, rapid detection of the virus is required to enable measures to be implemented in preventing widespread transmission. Based on primers and probes targeting at the VP1 region, a real-time reverse-transcriptase polymerase chain reaction (RT-PCR) hybridization probe assay was developed for specific detection of EV71 from clinical specimens. Quantitative analysis showed that the assay was able to detect as low as 5 EV71 viral copies and EV71 was detected from 46 of the 55 clinical specimens obtained from pediatric patients suffering from HFMD during the period from 2000 to 2003 in Singapore. This study showed that the single tube real-time RT-PCR assay developed in this study can be applied as a rapid and sensitive method for specific detection of EV71 directly from clinical specimens. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme which catalyses the conversion of glyceraldehyde-3-phosphate to 1,3 diphosphoglycerate. It is considered to be constitutively expressed in all cells, and as such the gene for GAPDH (gapd) is commonly used as a benchmark reference in expression studies. However, previous investigations have demonstrated that gapd may show altered gene expression in a number of disease states and under certain experimental conditions, suggesting that results of experiments using gapd as a control should be interpreted with caution. Furthermore, consideration must be given to the potential co-amplification of pseudogenes of gapd during RT-PCR. Here, we describe a method to avoid the amplification of contaminating pseudogenes through the design of primers that bind only to genuine gapd mRNA transcript. © 2003 Elsevier Ltd. All rights reserved.