975 resultados para SECONDARY PRODUCTION
Resumo:
Inland waters are of global biogeochemical importance. They receive carbon inputs of ~ 4.8 Pg C/ y of which, 12 % is buried, 18 % transported to the oceans, and 70 % supports aquatic secondary production. However, the mechanisms that determine the fate of organic matter (OM) in these systems are poorly defined. One aspect of this is the formation of organo-mineral complexes in aquatic systems and their potential as a route for OM transport and burial vs. their use as carbon (C) and nitrogen (N) sources within aquatic systems. Organo-mineral particles form by sorption of dissolved OM to freshly eroded mineral surfaces and may contribute to ecosystem-scale particulate OM fluxes. We experimentally tested the availability of mineral-sorbed OM as a C & N source for streamwater microbial assemblages and streambed biofilms. Organo-mineral particles were constructed in vitro by sorption of 13C:15N-labelled amino acids to hydrated kaolin particles, and microbial degradation of these particles compared with equivalent doses of 13C:15N-labelled free amino acids. Experiments were conducted in 120 ml mesocosms over 7 days using biofilms and water sampled from the Oberer Seebach stream (Austria). Each incubation experienced a 16:8 light:dark regime, with metabolism monitored via changes in oxygen concentrations between photoperiods. The relative fate of the organo-mineral particles was quantified by tracing the mineralization of the 13C and 15N labels and their incorporation into microbial biomass. Here we present the initial results of 13C-label mineralization, incorporation and retention within dissolved organic carbon pool. The results indicate that 514 (± 219) μmol/ mmol of the 13:15N labeled free amino acids were mineralized over the 7-day incubations. By contrast, 186 (± 97) μmol/ mmol of the mineral-sorbed amino acids were mineralized over a similar period. Thus, organo-mineral complexation reduced amino acid mineralization by ~ 60 %, with no differences observed between the streamwater and biofilm assemblages. Throughout the incubations, biofilms were observed to leach dissolved organic carbon (DOC). However, within the streamwater assemblage the presence of both organo-mineral particles and kaolin particles was associated with significant DOC removal (-1.7 % and -7.5 % respectively). Consequently, the study demonstrates that mineral and organo-mineral particles can limit the availability of DOC in aquatic systems, providing nucleation sites for flocculation and fresh mineral surfaces, which facilitate OM-sorption. The formation of these organo-mineral particles subsequently restricts microbial OM degradation, potentially altering the transport and facilitating the burial of OM within streams.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A distribuição espacial e temporal da densidade e biomassa dos copépodos planctônicos Pseudodiaptomus richardi e P. acutus, ao longo de um gradiente de salinidade, foi estudada no Estuário do Rio Caeté (Norte do Brasil) durante os meses de junho e dezembro de 1998 (estação seca) e fevereiro e maio de 1999 (estação chuvosa). A biomassa dos copépodos foi estimada a partir de parâmetros da regressão baseada na relação entre o peso seco e o comprimento do corpo (prossoma) de organismos adultos. O Estuário do Rio Caeté caracterizou-se por uma grande variação espacial e sazonal na salinidade (0,8-37,2). A relação peso-comprimento para ambas as espécies de Pseudodiaptomus foi do tipo exponencial. Os valores de densidade e biomassa oscilaram entre 0,28-46,18 ind. m-3 e 0,0022-0,3507 mg DW. m-3 para P. richardi; e entre 0,01-17,02 ind. m-3 e 0,0005-0,7181 mg DW. m-3 para P. acutus. Os resultados revelaram que a contribuição de P. richardi para a produção secundária no Estuário do Rio Caeté é mais importante na zona liminética que em outras zonas onde foram dominantes os regimes eurihalino-polihalino. Contudo, para P. acutus não foi possível observar de forma clara um padrão de distribuição espacial e temporal para a área estudada.
Resumo:
O presente estudo objetivou avaliar a estrutura da assembléia de macroinvertebrados bentônicos no médio rio Xingu, estimando a produção secundária anual. Dois ambientes no setor do médio rio Xingu foram estudados, um lêntico (lago da Ilha Grande) e o canal principal. No lago foram realizadas coletas nos habitats marginal e profundo, utilizando amostrador tipo core e uma draga Ekiman-Birge; já nos habitats de corredeira e remanso no canal principal, os organismos foram coletados com uma rede tipo surber e core. As coletas ocorerram durante 12 meses abrangendo o período de cheia (janeiro a maio) e da seca (junho a dezembro) local. Foram coletados um total de 23.432 indivíduos da macrofauna bentônica, referentes a 43 táxons, 8 classes e 4 filos. Os insetos e gastrópodes corresponderam, respectivamente, a 47% e 36% do total de exemplares capturados. A maior diversidade de táxons foi registrada para os ambientes de corredeiras. O ambiente de remanso do rio por sua vez foi muito similar em riqueza de espécies, ao ambiente marginal do lago. A densidade média no período de seca foi de 1.605,75 ind.m-2, e no período da cheia de 894,43 ind.m-2. Leptophlebiidae, Hydropsychidae e Chironomidae, com 29,0%, 21,4% e 13,1%, respectivamente contribuíram com a maior abundância no ambiente de rio. Já para o lago, os Chironomidae (34,6%) Oligochaeta (23,2%), Chaoboridade (14,7%) e Nematoda (14,5%) contribuíram com a maior proporção da densidade. As diferenças encontradas nas assembléias de macroinvertebrados entre habitats foram relacionadas a diferenças de oxigênio dissolvido e nutrientes. Os ambientes de corredeira foram os mais diferenciados de todos os habitats estudados.
Resumo:
The relative growth and population structure of the terebellid Nicolea uspiana were investigated in the intertidal zone of a rocky shore on the south-east coast of Brazil, from May 2006 to May 2007. Eight hundred and forty-seven individuals of N. uspiana were analysed: 391 males, 163 females, and 293 immatures. Although significant differences in some morphometric parameters were found, there was no sexual dimorphism between males and females. There were differences in total length, width of segments, and length of the notopodial region between matures and immatures. The negative allometry of the total length in relation to five other parameters showed that this feature is a good measure for estimating the individual size, which was then used in the analysis of population structure. This population of N. uspiana showed a bimodal size frequency distribution, with immature and mature individuals found during the entire year. This pattern indicates continuous reproduction, with each cohort growing for at least three to four months and being responsible for two consecutive settlement peaks.
Resumo:
Reclaimed metals, or secondary metals, are becoming of great importance in the metal industries of the world. Secondary metals are an important factor in production. The increase in the secondary production of copper is due to many factors. One of these may be its permenance, that is, the metal does not corrode very readily. Another reason for increase in production is the high price paid for it.
Resumo:
The dynamics of phytoplankton and nutrients before, during and after the winter-spring bloom on Georges Bank were studied on 6 monthly survey cruises from January to June 1999. We measured hydrography, phytoplankton cell densities, chlorophyll a, dissolved inorganic nutrients (NO3 + NO2, NH4, Si(OH)(4), PO4), dissolved organic nitrogen (DON) and phosphorus (DOP), particulate organic carbon (POC) and nitrogen (PON) and total particulate phosphorus (TPP). We present evidence that phytoplankton production may be significant year-round, and that the winter-spring bloom may have started in January. From January to April the phytoplankton was comprised almost exclusively of diatoms, reaching cell densities in March and April of ca. 450 cells ml(-1); chlorophyll a concentrations exceeded 10 mug l(-1) in April. Diatoms decreased to relatively low levels in May (< 50 x 10(3) cells l(-1)) and increased again in June (>300 x 10(3) cells l(-1)). Densities of dinoflagellates and nanoflagellates were low (< 10 x 10(3) cells l(-1)) from January to April, and increased in May and June to nearly 300 x 10(3) cells l(-1). Nitrate + nitrite concentrations in January were <3 muM in the shallow, central portion of the bank and decreased steadily each month. Silicate was also <3 muM over an even larger area of the central bank in January and declined to <1.5 muM over most of the Bank in April. The data suggest that silicate depletion, not DIN, contributed to the cessation of the diatom bloom. Regeneration of silicate occurred in May and June, presumably as a result of rising water temperatures in late spring which increased the dissolution rate of diatom frustules from the earlier diatom bloom. Dissolved organic nitrogen may have been utilized at the start of the winter-spring bloom; concentrations were ca, 14 muM in January, dropping to < 6 mug l(-1) in February, after which DON concentrations steadily rose to > 15 mug l(-1) in June. Overall micro-and nanoplankton biomass, measured as POC, PON and TPP, increased over the 6 mo period, as did nutritional quality of that biomass as indicated by declining C:N ratios. Our results suggest there may have been an increase in the heterotrophic component of the plankton in May and June which coincided with a second burst in diatom abundance. We discuss general features of planktonic production and nutrient dynamics with respect to year-round production on the Bank.
Resumo:
Seamounts are of great interest to science, industry and conservation because of their potential role as 'stirring rods' of the oceans, their enhanced productivity, their high local biodiversity, and the growing exploitation of their natural resources. This is accompanied by rising concern about the threats to seamount ecosystems, e.g. through over-fishing and the impact of trawling. OASIS described the functioning characteristics of seamount ecosystems. OASIS' integrated hydrographic, biogeochemical and biological information. Based on two case studies. The scientific results, condensed in conceptual and mass balanced ecosystem models, were applied to outline a model management plan as well as site-specific management plans for the seamounts investigated. OASIS addressed five main objectives: Objective 1: To identify and describe the physical forcing mechanisms effecting seamount systems Objective 2: To assess the origin, quality and dynamics of particulate organic material within the water column and surface sediment at seamounts. Objective 3: To describe aspects of the biodiversity and the ecology of seamount biota, to assess their dynamics and the maintenance of their production. Objective 4: Modelling the trophic ecology of seamount ecosystems. Objective 5: Application of scientific knowledge to practical conservation.
Resumo:
Near-bottom zooplankton communities have rarely been studied despite numerous reports of high zooplankton concentrations, probably due to methodological constraints. In Kongsfjorden, Svalbard, the near-bottom layer was studied for the first time by combining daytime deployments of a remotely operated vehicle (ROV), the optical zooplankton sensor moored on-sight key species investigation (MOKI), and Tucker trawl sampling. ROV data from the fjord entrance and the inner fjord showed high near-bottom abundances of euphausiids with a mean concentration of 17.3 ± 3.5 n/100 m**3. With the MOKI system, we observed varying numbers of euphausiids, amphipods, chaetognaths, and copepods on the seafloor at six stations. Light-induced zooplankton swarms reached densities in the order of 90,000 (euphausiids), 120,000 (amphipods), and 470,000 ind/m**3 (chaetognaths), whereas older copepodids of Calanus hyperboreus and C. glacialis did not respond to light. They were abundant at the seafloor and 5 m above and showed maximum abundance of 65,000 ind/m**3. Tucker trawl data provided an overview of the seasonal vertical distribution of euphausiids. The most abundant species Thysanoessa inermis reached near-bottom concentrations of 270 ind/m**3. Regional distribution was neither related to depth nor to location in the fjord. The taxa observed were all part of the pelagic community. Our observations suggest the presence of near-bottom macrozooplankton also in other regions and challenge the current view of bentho-pelagic coupling. Neglecting this community may cause severe underestimates of the stock of elagic zooplankton, especially predatory species, which link secondary production with higher trophic levels.
Resumo:
Bacterial abundance, bacterial secondary production (BSP) and potential ectoproteolytic activity (PEA) were measured at 6 stations along the Strait of Magellan, South America, toward the end of summer 1995. Because of hydrological and climatic factors, 3 main areas could be identified in which the bacterial component displayed specific characteristics. In the Pacific Ocean side, subjected to freshwater inputs from rainfalls and melting of glaciers, the bacterial activities showed the highest values (BSP: 228.2 ng C/l h; PEA: 12.2 nmol/l h). The bacterial biomass was greater than the phytoplanktonic biomass, probably due to organic inputs from land stimulating the bacterial growth. The central part of the Strait demonstrated the lowest values (BSP: 32.6 ng C/l h, PEA: 4.6 nmol/l h), although the ratio of bacterial biomass to phytoplanktonic biomass was greater than 1. In the third area, the Atlantic Ocean opening, subjected to strong tidal currents, BSP and PEA displayed high values, 80 to 88.7 ng C/l h and 11.7 nmol/l h respectively. Nevertheless, the ratio of bacterial to phytoplanktonic biomass was less than 1, like in eutrophic areas. On the other hand, no impact of the tide was noted on bacterial parameters. Considering all samples measured in the 0 to 50 m layer, although BSP and PEA were positively correlated with bacterial abundance, the PEA to BSP ratio was negatively correlated with the bacterial biomass (r = -0.72, p < 0.001, n = 22). This ratio could be an indicator of trophic conditions in the 3 subsystems of the Strait.
Resumo:
1. Shallow arctic lakes and ponds have simple and short food webs, but large uncertainties remain about benthic-pelagic links in these systems. We tested whether organic matter of benthic origin supports zooplankton biomass in a pond in NE Greenland, using stable isotope analysis of carbon and nitrogen in the pond itself and in a 13C-enrichment enclosure experiment. In the latter, we manipulated the carbon isotope signature of benthic algae to enhance its isotopic discrimination from other potential food sources for zooplankton. 2. The cladoceran Daphnia middendorffiana responded to the 13C-enrichment of benthic mats with progressively increasing d13C values, suggesting benthic feeding. Stable isotope analysis also pointed towards a negligible contribution of terrestrial carbon to the diet of D. middendorffiana. This agreed with the apparent dominance of autochthonous dissolved organic matter in the pond revealed by analysis of coloured dissolved organic matter. 3. Daily net production by phytoplankton in the pond (18 mg C/m**2/day) could satisfy only up to half of the calculated minimum energy requirements of D. middendorffiana (35 mg C/m**2/day), whereas benthic primary production alone (145 mg C/m**2/day) was more than sufficient. 4. Our findings highlight benthic primary production as a major dietary source for D. middendorffiana in this system and suggest that benthic organic matter may play a key role in sustaining pelagic secondary production in such nutrient-limited high arctic ponds.
Resumo:
Size-, species- and age composition of zooplankton was studied in the ice-covered Chupa Inlet (White Sea, Kandalksha Bay) in early April 2002. The species composition of zooplankton was poor and typical for the end of the winter season, and abundance and biomass were considerably lower than in summer. In terms of biomass two species of copepods (Calanus glacialis and Pseudocalanus minutus) prevailed. Both species were already feeding on ice algae available and began to reproduce. Such early reproduction of Calanus glacialis was noted in the White Sea for the first time. Obtained results show that secondary production in the White Sea starts well before thawing of the ice cover.
Resumo:
Daily ingestion rates of the pelagic hyperiid amphipod Themisto libellula were studied in the marginal ice zone of the Arctic Fram Strait by feeding experiments, respiration measurements and an allometric approach based on body mass. Amphipods were collected by stratified multiple opening/closing net hauls and Rectangular Midwater Trawl (RMT 8) in August 2000 during the expedition ARK XVI/2 of R/V "Polarstern". T. libellula occurred with abundances of 0.043 and 0.015 ind/m**3 in the upper 30 m of the water column at two RMT 8 stations. Based on respiration data, the daily ingestion necessary to cover metabolic energy demands measured 1.9±0.6% of body carbon per day. Actual prey consumption during feeding experiments with Calanus copepodids as prey was very similar and accounted for 1.9±1.5%/day, indicating that feeding on Calanus can meet the energy demands of T. libellula. In general, experimental results were slightly lower than the maximum potential ingestion (2%/day for an individual of median body dry mass of 32 mg) estimated by an allometric equation based on body mass, but feeding experiments showed a strong variability. Reduced metabolism and low ingestion rates of T. libellula are consistent with low ambient temperature, large body size, slow growth and long life span of this polar species. The effect of the active pelagic life style of T. libellula on metabolism and ingestion rate is discussed in comparison to the sympagic (i.e. ice-associated) amphipod Gammarus wilkitzkii of similar body size living in the same environment. In relation to the mesozooplankton biomass in the investigation area, the predation impact by T. libellula was low. However, high-Arctic conditions also limit the secondary production of principal prey species, such as Calanus glacialis and Calanus hyperboreus, so that even low predation rates may affect the growth of prey populations.