992 resultados para S-matrix theory


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polarized scattering in spectral lines is governed by a 4; 4 matrix that describes how the Stokes vector is scattered and redistributed in frequency and direction. Here we develop the theory for this redistribution matrix in the presence of magnetic fields of arbitrary strength and direction. This general magnetic field case is called the Hanle- Zeeman regime, since it covers both of the partially overlapping weak- and strong- field regimes in which the Hanle and Zeeman effects dominate the scattering polarization. In this general regime, the angle-frequency correlations that describe the so-called partial frequency redistribution (PRD) are intimately coupled to the polarization properties. We develop the theory for the PRD redistribution matrix in this general case and explore its detailed mathematical properties and symmetries for the case of a J = 0 -> 1 -> 0 scattering transition, which can be treated in terms of time-dependent classical oscillator theory. It is shown how the redistribution matrix can be expressed as a linear superposition of coherent and noncoherent parts, each of which contain the magnetic redistribution functions that resemble the well- known Hummer- type functions. We also show how the classical theory can be extended to treat atomic and molecular scattering transitions for any combinations of quantum numbers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A modified density matrix renormalization group (DMRG) algorithm is applied to the zigzag spin-1/2 chain with frustrated antiferromagnetic exchange J(1) and J(2) between first and second neighbors. The modified algorithm yields accurate results up to J(2)/J(1) approximate to 4 for the magnetic gap Delta to the lowest triplet state, the amplitude B of the bond order wave phase, the wavelength lambda of the spiral phase, and the spin correlation length xi. The J(2)/J(1) dependences of Delta, B, lambda, and xi provide multiple comparisons to field theories of the zigzag chain. The twist angle of the spiral phase and the spin structure factor yield additional comparisons between DMRG and field theory. Attention is given to the numerical accuracy required to obtain exponentially small gaps or exponentially long correlations near a quantum phase transition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Kohn-Sham density functional theory (KSDFT) is currently the main work-horse of quantum mechanical calculations in physics, chemistry, and materials science. From a mechanical engineering perspective, we are interested in studying the role of defects in the mechanical properties in materials. In real materials, defects are typically found at very small concentrations e.g., vacancies occur at parts per million, dislocation density in metals ranges from $10^{10} m^{-2}$ to $10^{15} m^{-2}$, and grain sizes vary from nanometers to micrometers in polycrystalline materials, etc. In order to model materials at realistic defect concentrations using DFT, we would need to work with system sizes beyond millions of atoms. Due to the cubic-scaling computational cost with respect to the number of atoms in conventional DFT implementations, such system sizes are unreachable. Since the early 1990s, there has been a huge interest in developing DFT implementations that have linear-scaling computational cost. A promising approach to achieving linear-scaling cost is to approximate the density matrix in KSDFT. The focus of this thesis is to provide a firm mathematical framework to study the convergence of these approximations. We reformulate the Kohn-Sham density functional theory as a nested variational problem in the density matrix, the electrostatic potential, and a field dual to the electron density. The corresponding functional is linear in the density matrix and thus amenable to spectral representation. Based on this reformulation, we introduce a new approximation scheme, called spectral binning, which does not require smoothing of the occupancy function and thus applies at arbitrarily low temperatures. We proof convergence of the approximate solutions with respect to spectral binning and with respect to an additional spatial discretization of the domain. For a standard one-dimensional benchmark problem, we present numerical experiments for which spectral binning exhibits excellent convergence characteristics and outperforms other linear-scaling methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

En esta tesis estudiamos las teorías sobre la Matriz Densidad Reducida (MDR) como un marco prometedor. Nos enfocamos sobre esta teorías desde dos aspectos: Primero, usamos algunos modelos sencillos hechos con dos partículas las cuales estan armónicamente confinadas como una base para ilustrar la utilidad de la matriz densidad. Para tales sistemas, usamos la MDR de un cuerpo para calcular algunas cantidades de interés tales como densidad de momentum. Posteriormente obtenemos los orbitales naturales y su número de ocupación para algunos de los modelos, y en uno de los casos expresamos la MDR de dos cuerpos de manera exacta en términos de la MDR de un cuerpo. También usamos el teorema diferencial del virial para establecer una descripción unificada de la familia entera de estos sistemas modelo en términos de la densidad. En la seguna parte cambiamos a casos fuera del equilibrio y analizamos la así llamada jerarquía BBGKY de ecuaciones para describir la evolución temporal de un sistema de muchos cuerpos en términos de sus MDRs (a todos los órdenes). Proveemos un exhaustivo estudio de los desafíos y problemas abiertos ligados a la truncación de tales jerarquías de ecuaciones para hacerlas aplicables. Restringimos nuestro análisis a la evolución acoplada de la MDR de uno y dos cuerpos, donde los efectos de correlación de alto orden estan embebidos dentro de la aproximación usada para cerrar las ecuaciones. Probamos que dentro de esta aproximación, el número de electrones y la energía total se conservan, sin importar la aproximación usada. Luego, demostramos que aplicando los esquemas de truncación de estado base para llevar los electrones a comportamientos indeseables y no físicos, tales como la violación e incluso la divergencia en la densidad electrónica local, tanto en regímenes correlacionados débiles y fuertes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The results of calculations investigating the effects of autodetaching resonances on the multiphoton detachment spectra of H are presented. The R-matrix Floquet method is used, in which the coupling of the ion with the laser field is described non-perturbatively. The laser field is fixed at an intensity of 10 W cm, while frequency ranges are chosen such that the lowest autodetaching states of the ion are excited through a two- or three-photon transition from the ground state. Detachment rates are compared, where possible, to previous results obtained using perturbation theory. An illustration of how non-lowest-order processes, involving autodetaching states, can lead to light-induced continuum structures is also presented. Finally, it is demonstrated that by using a frequency connecting the 1s and 2s states, the probability of exciting the residual hydrogen atom is significantly enhanced.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The R-matrix Floquet approach is applied to study the negative F and Cl ions in a light field. Detachment rates are obtained for detachment processes involving up to three photons. The results obtained in the present approach are compared to other experimental and theoretical results. For two- and three-photon processes reasonable agreement with other calculations has been found, while for two-photon detachment the results agree with the experimental cross sections. The three-photon results are in less good agreement with experiment although the larger error bars make accurate comparisons more difficult. The changes in the detachment behaviour for these ions are compared to each other as well as to the detachment behaviour of H.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new linear equations method for calculating the R-matrix, which arises in the R-matrix-Floquet theory of multiphoton processes, is introduced. This method replaces the diagonalization of the Floquet Hamiltonian matrix by the solution of a set of linear simultaneous equations which are solved, in the present work, by the conjugate gradient method. This approach uses considerably less computer memory and can be readily ported onto parallel computers. It will thus enable much larger problems of current interest to be treated. This new method is tested by applying it to three-photon ionization of helium at frequencies where double resonances with a bound state and autoionizing states are important. Finally, an alternative linear equations method, which avoids the explicit calculation of the R-matrix by incorporating the boundary conditions directly, is described in an appendix.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The extension of density functional theory (DFT) to include pairing correlations without formal violation of the particle-number conservation condition is described. This version of the theory can be considered as a foundation of the application of existing DFT plus pairing approaches to atoms, molecules, ultracooled and magnetically trapped atomic Fermi gases, and atomic nuclei where the number of particles is conserved exactly. The connection with Hartree-Fock-Bogoliubov (HFB) theory is discussed, and the method of quasilocal reduction of the nonlocal theory is also described. This quasilocal reduction allows equations of motion to be obtained which are much simpler for numerical solution than the equations corresponding to the nonlocal case. Our theory is applied to the study of some even Sn isotopes, and the results are compared with those obtained in the standard HFB theory and with the experimental ones.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In dieser Doktorarbeit wird eine akkurate Methode zur Bestimmung von Grundzustandseigenschaften stark korrelierter Elektronen im Rahmen von Gittermodellen entwickelt und angewandt. In der Dichtematrix-Funktional-Theorie (LDFT, vom englischen lattice density functional theory) ist die Ein-Teilchen-Dichtematrix γ die fundamentale Variable. Auf der Basis eines verallgemeinerten Hohenberg-Kohn-Theorems ergibt sich die Grundzustandsenergie Egs[γgs] = min° E[γ] durch die Minimierung des Energiefunktionals E[γ] bezüglich aller physikalischer bzw. repräsentativer γ. Das Energiefunktional kann in zwei Beiträge aufgeteilt werden: Das Funktional der kinetischen Energie T[γ], dessen lineare Abhängigkeit von γ genau bekannt ist, und das Funktional der Korrelationsenergie W[γ], dessen Abhängigkeit von γ nicht explizit bekannt ist. Das Auffinden präziser Näherungen für W[γ] stellt die tatsächliche Herausforderung dieser These dar. Einem Teil dieser Arbeit liegen vorausgegangene Studien zu Grunde, in denen eine Näherung des Funktionals W[γ] für das Hubbardmodell, basierend auf Skalierungshypothesen und exakten analytischen Ergebnissen für das Dimer, hergeleitet wird. Jedoch ist dieser Ansatz begrenzt auf spin-unabhängige und homogene Systeme. Um den Anwendungsbereich von LDFT zu erweitern, entwickeln wir drei verschiedene Ansätze zur Herleitung von W[γ], die das Studium von Systemen mit gebrochener Symmetrie ermöglichen. Zuerst wird das bisherige Skalierungsfunktional erweitert auf Systeme mit Ladungstransfer. Eine systematische Untersuchung der Abhängigkeit des Funktionals W[γ] von der Ladungsverteilung ergibt ähnliche Skalierungseigenschaften wie für den homogenen Fall. Daraufhin wird eine Erweiterung auf das Hubbardmodell auf bipartiten Gittern hergeleitet und an sowohl endlichen als auch unendlichen Systemen mit repulsiver und attraktiver Wechselwirkung angewandt. Die hohe Genauigkeit dieses Funktionals wird aufgezeigt. Es erweist sich jedoch als schwierig, diesen Ansatz auf komplexere Systeme zu übertragen, da bei der Berechnung von W[γ] das System als ganzes betrachtet wird. Um dieses Problem zu bewältigen, leiten wir eine weitere Näherung basierend auf lokalen Skalierungseigenschaften her. Dieses Funktional ist lokal bezüglich der Gitterplätze formuliert und ist daher anwendbar auf jede Art von geordneten oder ungeordneten Hamiltonoperatoren mit lokalen Wechselwirkungen. Als Anwendungen untersuchen wir den Metall-Isolator-Übergang sowohl im ionischen Hubbardmodell in einer und zwei Dimensionen als auch in eindimensionalen Hubbardketten mit nächsten und übernächsten Nachbarn. Schließlich entwickeln wir ein numerisches Verfahren zur Berechnung von W[γ], basierend auf exakten Diagonalisierungen eines effektiven Vielteilchen-Hamilton-Operators, welcher einen von einem effektiven Medium umgebenen Cluster beschreibt. Dieser effektive Hamiltonoperator hängt von der Dichtematrix γ ab und erlaubt die Herleitung von Näherungen an W[γ], dessen Qualität sich systematisch mit steigender Clustergröße verbessert. Die Formulierung ist spinabhängig und ermöglicht eine direkte Verallgemeinerung auf korrelierte Systeme mit mehreren Orbitalen, wie zum Beispiel auf den spd-Hamilton-Operator. Darüber hinaus berücksichtigt sie die Effekte kurzreichweitiger Ladungs- und Spinfluktuationen in dem Funktional. Für das Hubbardmodell wird die Genauigkeit der Methode durch Vergleich mit Bethe-Ansatz-Resultaten (1D) und Quanten-Monte-Carlo-Simulationen (2D) veranschaulicht. Zum Abschluss wird ein Ausblick auf relevante zukünftige Entwicklungen dieser Theorie gegeben.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We discuss the generalized eigenvalue problem for computing energies and matrix elements in lattice gauge theory, including effective theories such as HQET. It is analyzed how the extracted effective energies and matrix elements converge when the time separations are made large. This suggests a particularly efficient application of the method for which we can prove that corrections vanish asymptotically as exp(-(E(N+1) - E(n))t). The gap E(N+1) - E(n) can be made large by increasing the number N of interpolating fields in the correlation matrix. We also show how excited state matrix elements can be extracted such that contaminations from all other states disappear exponentially in time. As a demonstration we present numerical results for the extraction of ground state and excited B-meson masses and decay constants in static approximation and to order 1/m(b) in HQET.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider general d-dimensional lattice ferromagnetic spin systems with nearest neighbor interactions in the high temperature region ('beta' << 1). Each model is characterized by a single site apriori spin distribution taken to be even. We also take the parameter 'alfa' = ('S POT.4') - 3 '(S POT.2') POT.2' > 0, i.e. in the region which we call Gaussian subjugation, where ('S POT.K') denotes the kth moment of the apriori distribution. Associated with the model is a lattice quantum field theory known to contain a particle of asymptotic mass -ln 'beta' and a bound state below the two-particle threshold. We develop a 'beta' analytic perturbation theory for the binding energy of this bound state. As a key ingredient in obtaining our result we show that the Fourier transform of the two-point function is a meromorphic function, with a simple pole, in a suitable complex spectral parameter and the coefficients of its Laurent expansion are analytic in 'beta'.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

R-matrix with time-dependence theory is applied to electron-impact ionisation processes for He in the S-wave model. Cross sections for electron-impact excitation, ionisation and ionisation with excitation for impact energies between 25 and 225 eV are in excellent agreement with benchmark cross sections. Ultra-fast dynamics induced by a scattering event is observed through time-dependent signatures associated with autoionisation from doubly excited states. Further insight into dynamics can be obtained through examination of the spin components of the time-dependent wavefunction.