1000 resultados para Rubidium


Relevância:

10.00% 10.00%

Publicador:

Resumo:

本征脸方法是广泛应用于人脸识别的一种图像处理方法,本文将其引入到原子芯片上囚禁的冷原子云吸收成像照片的图像处理中,以减少其中的干涉条纹,增加信噪比。本文首先介绍了吸收成像照片的标准处理方法以及干涉条纹的产生原因,由于参考照片和吸收成像照片中的干涉条纹会发生随机的相对变化,处理后干涉条纹难以消除。和标准的处理方法相比,本征脸方法不是使用1张而是50张参考照片,利用这些照片重构出一张新的参考照片,这张照片比那50张中的任何一张都更近似于吸收成像照片,因此和只使用1张参考照片相比,处理之后的干涉条纹对比度明显降

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the dispersive properties of excited-doublet four-level atoms interacting with a weak probe field and an intense coupling laser field. We have derived an analytical expression of the dispersion relation for a general excited-doublet four-level atomic system subject to a one-photon detuning. The numerical results demonstrate that for a typical rubidium D1 line configuration, due to the unequal dipole moments for the transitions of each ground state to double excited states, generally there exists no exact dark state in the system. Close to the two-photon resonance, the probe light can be absorbed orgained and propagate in the so-called superluminal form. This system may be used as an optical switch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extensive Rubidium-Strontium age determinations on both mineral and total rock samples of the crystalline rocks of New Zealand, which almost solely crop out in the South Island, indicate widespread plutonic and metamorphic activity occurred during two periods, one about 100-118 million years ago and the other about 340-370 million years ago. The former results date the Rangitata Orogeny as Cretaceous. They associate extensive plutonic activity with this orogeny which uplifted and metamorphosed the rocks of the New Zealand Geosyncline, although no field association between the metamorphosed geosynclinal rocks and plutonic rocks has been found. The Cretaceous plutonic rocks occur to the west in the Foreland Province in Fiordland, Nelson, and Westland, geographically separated from the Geosynclinal Province. Because of this synchronous timing of plutonic and high pressure metamorphic activity in spatially separated belts, the Rangitata Orogeny in New Zealand is very similar to late Mesozoic orogenic activity in many other areas of the circum-Pacific margin (Miyashiro, 1961).

The 340-370 million year rocks, both plutonic and metamorphic, have been found only in that part of the Foreland Province north of the Alpine Fault. There, they are concentrated along the west coast over a distance of 500 km, and appear scattered inland from the coast. Probably this activity marks the outstanding Phanerozoic stratigraphic gap in New Zealand which occurred after the Lower Devonian.

A few crystalline rocks in the Foreland Province north of the Alpine Fault with measured ages intermediate between 340 and 120 million years have been found. Of these, those with more than one mineral examined give discordant results. All of these rocks are tentatively regarded as 340-370 million year old rocks that have been variously disturbed during the Rangitata Orogeny, 100-120 million years ago.

In addition to these two periods, plutonic activity, dominantly basic and ultrabasic, but including the development of some rocks of intermediate and acidic composition, occurred along the margin of the Geosynclinal Province at its border with the Foreland Province during Permian times about 245 million years ago, and this activity possibly extended into the Mesozoic.

Evidence from rubidium-strontium analyses of minerals and a total rock, and from uranium, thorium, and lead analyses of uniform euhedral zircons from a meta-igneous portion of the Charleston Gneiss, previously mapped as Precambrian, indicate that this rock is a 350-370 million year old plutonic rock metamorphosed 100 million yea rs ago during the Rangitata Orogeny. No crystalline rocks with primary Precambrian ages have been found in New Zealand. However, Pb207/Pb206 ages of 1360 million years and 1370 million years have been determined for rounded detrital zircons separated from each of two hornfels samples of one of New Zealand's olde st sedimentary units, the Greenland Series. These two samples were metamorphosed 345- 370 million years ago. They occur along the west coast, north of the Alpine Fault, at Waitaha River and Moeraki River, separated by 135 km. The Precambrian measured ages are most likely minimum ages for the oldest source area which provided the detrital zircons because the uranium, thorium and lead data are highly discordant. These results are of fundamental importance for the tectonic picture of the Southwest Pacific margin and demonstrate the existence of relatively old continental crust of some lateral extent in the neighborhood of New Zealand.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alkali vapours, such as rubidium, are being used extensively in several important fields of research such as slow and stored light nonlinear optics quantum computation, atomic clocks and magnetometers. Recently, there is a growing effort towards miniaturizing traditional centimetre-size vapour cells. Owing to the significant reduction in device dimensions, light-matter interactions are greatly enhanced, enabling new functionalities due to the low power threshold needed for nonlinear interactions. Here, taking advantage of the mature platform of silicon photonics, we construct an efficient and flexible platform for tailored light-vapour interactions on a chip. Specifically, we demonstrate light-matter interactions in an atomic cladding waveguide, consisting of a silicon nitride nano-waveguide core with a rubidium vapour cladding. We observe the efficient interaction of the electromagnetic guided mode with the rubidium cladding and show that due to the high confinement of the optical mode, the rubidium absorption saturates at powers in the nanowatt regime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We experimentally demonstrate two-photon Doppler free interactions on a chip-scale platform consisting of a silicon nitride waveguide integrated with rubidium vapor cladding. We obtain absorption lines having widths of 300 MHz, using low power levels. © OSA 2013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We experimentally demonstrate two-photon Doppler free interactions on a chip-scale platform consisting of a silicon nitride waveguide integrated with rubidium vapor cladding. We obtain absorption lines having widths of 300 MHz, using low power levels. © OSA 2013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We experimentally demonstrate light-matter interactions on a chip, consisting of a silicon nitride wave-guide integrated with rubidium vapor cladding. The measured absorption spectra provide indications for low light nonlinear interactions. © 2012 OSA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We experimentally demonstrate light-matter interactions on a chip, consisting of a silicon nitride wave-guide integrated with rubidium vapor cladding. The measured absorption spectra provide indications for low light nonlinear interactions. © OSA 2012.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The data on the isotope compositions of rubidium, strontium and oxygen in the pumice of Okinawa Trough are reported for the first time. The ages of the pumice were successfully dated with the method of U-series disequilibrium. Then, the material source, crystallization evolution of magma and activity cycles of volcanos are explored. Isotopic data show that pumice magma was originally from the mantle, but had undergone a full crystallization differentiation and had been contaminated to a fair extent by crust-derived materials before the magma was erupted out of the sea floor. According to the dating results available so far, the earliest volcanic eruption in Okinawa Trough occurred about 70,000 a ago and the latest eruption was about 10,000 a B.P. During this period, there were three volcanic eruption cycles which were respectively corresponding to the middle Late Pleistocene, the late Late Pleistocene and the Early Holocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Samples from carbonate wall-rocks, skarn, ore of skarn type, later calcite vein, and ore of porphyry type in Shouwangfen copper deposit district were collected. Systematic study was carried out on carbon, oxygen, rubidium, strontium and sulfur isotope compositions of carbonates and sulfides in these samples. The first Isochron dating by the Rb-Sr isotopes in chalcopyrite of ore sub-sample was done as well. The following conclusions were obtained. The age (113.6±4.3Ma), obtained by Rb-Sr isotope isochron dating of chalcopyrite and pyrite from sub-sample of skarn ores, probably represents the true mineralization age of skarn ores. That demonstrates the genetic relationship between granodiorite in Shouwangfen complex and skarn copper ores. On the other hand, the Rb-Sr isochron age (73±15Ma) of chalcopyrite from porphyry ores is a little incredible because of bad synthesizing evaluation. But combined with other age data of igneous rocks, it implies the possibility of hydrothermal mineralization in connection with magma activity during the fourth period of Yanshanian in Hebei Province, even in the whole northern edge of Huabei continental block. Together from structure analysis of sulfide sub-samples, from pretreating preccedure of Rb-Sr isotope isochron and its' valuating, we found out that Rb-Sr isotope isochron of sulfide sub-samples is influenced by the crystal structure of sulfides. That is, sulfide ores with very big crystals are not suitable for sub-sample isochron. Carbon, oxygen, sulfur and strontium compositions, of different minerals in these two kinds of ores, imply that the ore-forming hydrothermal fluids were probably derived from magma deep under the crust. The calcite ~(87)Sr/~(86)Sr ratios from the porphyry are consistent to the initial 87Sr/86Sr ratio of the Rb-Sr isochron of chalcopyrite and pyrite in the skarn ore, indicating that these two kinds of ores have the same source characteristic, although the porphyry deposit was formed probably 40 million years later than the skarn one according to our dating results. Skarn and skarn ores are usually considered as interaction product between carbonate wall-rocks and magmatic fluids, but the carbon of the sedimentary carbonate seems not involved in the skarn ores. Considering the connection of magmatic processes and hydrothermal ore formation in the Shouwangfen district, particularly, the spatial distribution of skarn-type and porphyry-type ores, it is possible that the Shouwangfen ore district corresponds to a hydrothermal ore-forming system, which was promoted by high-intruding magmatic rocks. Systematic stable isotopic research can help to reveal the upper part of this hydrothermal ore-forming system, which mainly related to heated and circulating meteoric water, and the lower part principally related to ascending magmatic fluids. Both skarn and porphyry ore-bodies are formed by up-intruding magmatic fluids (even more deep mantle-derived fluids).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, the evanescent field sensing techniques of tapered optical nanofibres and microspherical resonators are investigated. This includes evanescent field spectroscopy of a silica nanofibre in a rubidium vapour; thermo-optical tuning of Er:Yb co-doped phosphate glass microspheres; optomechanical properties of microspherical pendulums; and the fabrication and characterisation of borosilicate microbubble resonators. Doppler-broadened and sub-Doppler absorption spectroscopic techniques are performed around the D2 transition (780.24 nm) of rubidium using the evanescent field produced at the waist of a tapered nanofibre with input probe powers as low as 55 nW. Doppler-broadened Zeeman shifts and a preliminary dichroic atomic vapour laser lock (DAVLL) line shape are also observed via the nanofibre waist with an applied magnetic field of 60 G. This device has the potential for laser frequency stabilisation while also studying the effects of atom-surface interactions. A non-invasive thermo-optical tuning technique of Er:Yb co-doped microspheres to specific arbitrary wavelengths is demonstrated particularly to 1294 nm and the 5S1/2F=3 to 5P3/2Fʹ=4 laser cooling transition of 85Rb. Reversible tuning ranges of up to 474 GHz and on resonance cavity timescales on the order of 100 s are reported. This procedure has prospective applications for sensing a variety of atomic or molecular species in a cavity quantum electrodynamics (QED) experiments. The mechanical characteristics of a silica microsphere pendulum with a relatively low spring constant of 10-4 Nm-1 are explored. A novel method of frequency sweeping the motion of the pendulum to determine its natural resonance frequencies while overriding its sensitivity to environmental noise is proposed. An estimated force of 0.25 N is required to actuate the pendulum by a displacement of (1-2) μm. It is suggested that this is of sufficient magnitude to be experienced between two evanescently coupled microspheres (photonic molecule) and enable spatial trapping of the micropendulum. Finally, single-input borosilicate microbubble resonators with diameters <100 μm are fabricated using a CO2 laser. Optical whispering gallery mode spectra are observed via evanescent coupling with a tapered fibre. A red-shift of (4-22) GHz of the resonance modes is detected when the hollow cavity was filled with nano-filtered water. A polarisation conversion effect, with an efficiency of 10%, is observed when the diameter of the coupling tapered fibre waist is varied. This effect is also achieved by simply varying the polarisation of the input light in the tapered fibre where the efficiency is optimised to 92%. Thus, the microbubble device acts as a reversible band-pass to band-stop optical filter for cavity-QED, integrated solid-state and semiconductor circuit applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, a magneto-optical trap setup is used to laser cool and confine a cloud of 85Rb. The cloud typically contains 108 atoms in a 1 mm3 volume at a temperature in the region of the Doppler Limit (146 _K for 85Rb). To study the cold cloud, a subwavelength optical fibre - a nanofibre, or ONF - is positioned inside the cloud. The ONF can be used in two ways. Firstly, it is an efficient fluorescence collection tool for the cold atoms. Loading times, lifetimes and temperatures can be measured by coupling the atomic fluorescence to the evanescent region of the ONF. Secondly, the ONF is used as a probe beam delivery tool using the evanescent field properties of the device, allowing one to perform spectroscopy on few numbers of near-surface atoms. With improvements in optical density of the cloud, this system is an ideal candidate in which to generate electromagnetically induced transparency and slow light. A theoretical study of the van der Waals and Casimir-Polder interactions between an atom and a dielectric surface is also presented in this work in order to understand their effects in the spectroscopy of near-surface atoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is centred on two experimental fields of optical micro- and nanofibre research; higher mode generation/excitation and evanescent field optical manipulation. Standard, commercial, single-mode silica fibre is used throughout most of the experiments; this generally produces high-quality, single-mode, micro- or nanofibres when tapered in a flame-heated, pulling rig in the laboratory. Single mode fibre can also support higher transverse modes, when transmitting wavelengths below that of their defined single-mode regime cut-off. To investigate this, a first-order Laguerre-Gaussian beam, LG01 of 1064 nm wavelength and doughnut-shaped intensity profile is generated free space via spatial light modulation. This technique facilitates coupling to the LP11 fibre mode in two-mode fibre, and convenient, fast switching to the fundamental mode via computer-generated hologram modulation. Following LP11 mode loss when exponentially tapering 125μm diameter fibre, two mode fibre with a cladding diameter of 80μm is selected fir testing since it is more suitable for satisfying the adiabatic criteria for fibre tapering. Proving a fruitful endeavour, experiments show a transmission of 55% of the original LP11 mode set (comprising TE01, TM01, HE21e,o true modes) in submicron fibres. Furthermore, by observing pulling dynamics and progressive mode-lass behaviour, it is possible to produce a nanofibre which supports only the TE01 and TM01 modes, while suppressing the HE21e,o elements of the LP11 group. This result provides a basis for experimental studies of atom trapping via mode-interference, and offers a new set of evanescent field geometries for sensing and particle manipulation applications. The thesis highlights the experimental results of the research unit’s Cold Atom subgroup, who successfully integrated one such higher-mode nanofibre into a cloud of cold Rubidium atoms. This led to the detection of stronger signals of resonance fluorescence coupling into the nanofibre and for light absorption by the atoms due to the presence of higher guided modes within the fibre. Theoretical work on the impact of the curved nanofibre surface on the atomic-surface van der Waals interaction is also presented, showing a clear deviation of the potential from the commonly-used flat-surface approximation. Optical micro- and nanofibres are also useful tools for evanescent-field mediated optical manipulation – this includes propulsion, defect-induced trapping, mass migration and size-sorting of micron-scale particles in dispersion. Similar early trapping experiments are described in this thesis, and resulting motivations for developing a targeted, site-specific particle induction method are given. The integration of optical nanofibres into an optical tweezers is presented, facilitating individual and group isolation of selected particles, and their controlled positioning and conveyance in the evanescent field. The effects of particle size and nanofibre diameter on pronounced scattering is experimentally investigated in this systems, as are optical binding effects between adjacent particles in the evanescent field. Such inter-particle interactions lead to regulated self-positioning and particle-chain speed enhancements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many metals have serious toxic effects when ingested by aquatic organisms, and the process of bioaccumulation intensifies this problem. A better understanding of bioaccumulation trends of anthropogenically introduced metals in freshwater food webs is necessary for the development of effective management strategies to protect aquatic organisms, as well as organisms (including humans) that consume top-predator fish in these food webs. Various fish species representing different trophic levels of a pelagic food chain were sampled from Lake Champlain (VT/NY). Atomic absorption spectrometry (AAS) was used to determine levels of chromium, copper, cobalt, cadmium, lead, zinc, nickel, rubidium, cesium and potassium in the fish samples. Metal concentrations for chromium, cobalt, nickel, cesium, cadmium (<5.0 ppm) and lead (<10.0 ppm) were found to be all below detection limits. Carbon and nitrogen isotopic ratios were analyzed to determine the trophic relationship of each fish species. Stable isotope and AAS metal data were used in tandem to produce linear regressions for each metal against trophic level to assess biomagnification. Both potassium and zinc showed no biomagnification because they are homeostatically regulated essential trace metals. Copper was under the detection limits for all fish species with the exception of the sea lamprey; but showed a significant biodiminution among the invertebrates and lamprey. Rubidium, a rarely studied metal, was shown to increase with trophic level in a marginally significant linear relationship suggesting biomagnification is possible where more trophic levels are sampled.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of four calix[5]arenes and three calix[6]arenes (R-calixarene-OCH2COR1) (R = H or Bu-t) with alkyl ketone residues (R-1 = Me or Bu-t) on the lower rim have been synthesized, and their affinity for complexation of alkali cations has been assessed through phase-transfer experiments and stability constant measurements. The conformations of these ketones have been probed by H-1 NMR and X-ray diffraction analysis, and by molecular mechanics calculations. Pentamer 3 (R R-1 = Bu-t) possesses a symmetrical cone conformation in solution and a very distorted cone conformation in the solid state. Pentamer 5 (R = H, R-1 = Bu-t) exists in a distorted 1,2-alternate conformation in the solid state, but in solution two slowly interconverting conformations, one a cone and the other presumed to be 1,2-alternate, can be detected. X-ray structure analysis of the sodium and rubidium perchlorate complexes of 3 reveal the cations deeply encapsulated by the ethereal and carbonyl oxygen atoms in distorted cone conformations which can be accurately reproduced by molecular mechanics calculations. The phase-transfer and stability constant data reveal that the extent of complexation depends on calixarene size and the nature of the alkyl residues adjacent to the ketonic carbonyls with tert-butyl much more efficacious than methyl.