894 resultados para Risk based Maintenance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The existing method of pipeline health monitoring, which requires an entire pipeline to be inspected periodically, is unproductive. A risk-based decision support system (DSS) that reduces the amount of time spent on inspection has been presented. The risk-based DSS uses the analytic hierarchy process (AHP), a multiple attribute decision-making technique, to identify the factors that influence failure on specific segments and analyzes their effects by determining probability of occurrence of these risk factors. The severity of failure is determined through consequence analysis. From this, the effect of a failure caused by each risk factor can be established in terms of cost and the cumulative effect of failure is determined through probability analysis. The model optimizes the cost of pipeline operations by reducing subjectivity in selecting a specific inspection method, identifying and prioritizing the right pipeline segment for inspection and maintenance, deriving budget allocation, providing guidance to deploy the right mix labor for inspection and maintenance, planning emergency preparation, and deriving logical insurance plan. The proposed methodology also helps derive inspection and maintenance policy for the entire pipeline system, suggest design, operational philosophy, and construction methodology for new pipelines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Performance-based maintenance contracts differ significantly from material and method-based contracts that have been traditionally used to maintain roads. Road agencies around the world have moved towards a performance-based contract approach because it offers several advantages like cost saving, better budgeting certainty, better customer satisfaction with better road services and conditions. Payments for the maintenance of road are explicitly linked to the contractor successfully meeting certain clearly defined minimum performance indicators in these contracts. Quantitative evaluation of the cost of performance-based contracts has several difficulties due to the complexity of the pavement deterioration process. Based on a probabilistic analysis of failures of achieving multiple performance criteria over the length of the contract period, an effort has been made to develop a model that is capable of estimating the cost of these performance-based contracts. One of the essential functions of such model is to predict performance of the pavement as accurately as possible. Prediction of future degradation of pavement is done using Markov Chain Process, which requires estimating transition probabilities from previous deterioration rate for similar pavements. Transition probabilities were derived using historical pavement condition rating data, both for predicting pavement deterioration when there is no maintenance, and for predicting pavement improvement when maintenance activities are performed. A methodological framework has been developed to estimate the cost of maintaining road based on multiple performance criteria such as crack, rut and, roughness. The application of the developed model has been demonstrated via a real case study of Miami Dade Expressways (MDX) using pavement condition rating data from Florida Department of Transportation (FDOT) for a typical performance-based asphalt pavement maintenance contract. Results indicated that the pavement performance model developed could predict the pavement deterioration quite accurately. Sensitivity analysis performed shows that the model is very responsive to even slight changes in pavement deterioration rate and performance constraints. It is expected that the use of this model will assist the highway agencies and contractors in arriving at a fair contract value for executing long term performance-based pavement maintenance works.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Performance-based maintenance contracts differ significantly from material and method-based contracts that have been traditionally used to maintain roads. Road agencies around the world have moved towards a performance-based contract approach because it offers several advantages like cost saving, better budgeting certainty, better customer satisfaction with better road services and conditions. Payments for the maintenance of road are explicitly linked to the contractor successfully meeting certain clearly defined minimum performance indicators in these contracts. Quantitative evaluation of the cost of performance-based contracts has several difficulties due to the complexity of the pavement deterioration process. Based on a probabilistic analysis of failures of achieving multiple performance criteria over the length of the contract period, an effort has been made to develop a model that is capable of estimating the cost of these performance-based contracts. One of the essential functions of such model is to predict performance of the pavement as accurately as possible. Prediction of future degradation of pavement is done using Markov Chain Process, which requires estimating transition probabilities from previous deterioration rate for similar pavements. Transition probabilities were derived using historical pavement condition rating data, both for predicting pavement deterioration when there is no maintenance, and for predicting pavement improvement when maintenance activities are performed. A methodological framework has been developed to estimate the cost of maintaining road based on multiple performance criteria such as crack, rut and, roughness. The application of the developed model has been demonstrated via a real case study of Miami Dade Expressways (MDX) using pavement condition rating data from Florida Department of Transportation (FDOT) for a typical performance-based asphalt pavement maintenance contract. Results indicated that the pavement performance model developed could predict the pavement deterioration quite accurately. Sensitivity analysis performed shows that the model is very responsive to even slight changes in pavement deterioration rate and performance constraints. It is expected that the use of this model will assist the highway agencies and contractors in arriving at a fair contract value for executing long term performance-based pavement maintenance works.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After a series of major storms over the last 20 years, the state of financing for U.S. natural disaster insurance has undergone substantial disruptions causing many federal and state backed programs against residential property damage to become severally underfunded. In order to regain actuarial soundness, policy makers have proposed a shift to a system that reflects risk-based pricing for property insurance. We examine survey responses from 1394 single-family homeowners in the state of Florida for support of several natural disaster mitigation policy reforms. Utilizing a partial proportional odds model we test for effects of location, risk perception, socio-economic and housing characteristics on support for policy reforms. Our findings suggest residents across the state, not just risk-prone homeowners, support the current subsidized model. We also examine several other policy questions from the survey to verify our initial results. Finally, the implications of our findings are discussed to provide inputs to policymakers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy efficiency and user comfort have recently become priorities in the Facility Management (FM) sector. This has resulted in the use of innovative building components, such as thermal solar panels, heat pumps, etc., as they have potential to provide better performance, energy savings and increased user comfort. However, as the complexity of components increases, the requirement for maintenance management also increases. The standard routine for building maintenance is inspection which results in repairs or replacement when a fault is found. This routine leads to unnecessary inspections which have a cost with respect to downtime of a component and work hours. This research proposes an alternative routine: performing building maintenance at the point in time when the component is degrading and requires maintenance, thus reducing the frequency of unnecessary inspections. This thesis demonstrates that statistical techniques can be used as part of a maintenance management methodology to invoke maintenance before failure occurs. The proposed FM process is presented through a scenario utilising current Building Information Modelling (BIM) technology and innovative contractual and organisational models. This FM scenario supports a Degradation based Maintenance (DbM) scheduling methodology, implemented using two statistical techniques, Particle Filters (PFs) and Gaussian Processes (GPs). DbM consists of extracting and tracking a degradation metric for a component. Limits for the degradation metric are identified based on one of a number of proposed processes. These processes determine the limits based on the maturity of the historical information available. DbM is implemented for three case study components: a heat exchanger; a heat pump; and a set of bearings. The identified degradation points for each case study, from a PF, a GP and a hybrid (PF and GP combined) DbM implementation are assessed against known degradation points. The GP implementations are successful for all components. For the PF implementations, the results presented in this thesis find that the extracted metrics and limits identify degradation occurrences accurately for components which are in continuous operation. For components which have seasonal operational periods, the PF may wrongly identify degradation. The GP performs more robustly than the PF, but the PF, on average, results in fewer false positives. The hybrid implementations, which are a combination of GP and PF results, are successful for 2 of 3 case studies and are not affected by seasonal data. Overall, DbM is effectively applied for the three case study components. The accuracy of the implementations is dependant on the relationships modelled by the PF and GP, and on the type and quantity of data available. This novel maintenance process can improve equipment performance and reduce energy wastage from BSCs operation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This report focuses on risk-assessment practices in the private rental market, with particular consideration of their impact on low-income renters. It is based on the fieldwork undertaken in the second stage of the research process that followed completion of the Positioning Paper. The key research question this study addressed was: What are the various factors included in ‘risk-assessments’ by real estate agents in allocating ‘affordable’ tenancies? How are these risks quantified and managed? What are the key outcomes of their decision-making? The study builds on previous research demonstrating that a relatively large proportion of low-cost private rental accommodation is occupied by moderate- to high-income households (Wulff and Yates 2001; Seelig 2001; Yates et al. 2004). This is occurring in an environment where the private rental sector is now the de facto main provider of rental housing for lower-income households across Australia (Seelig et al. 2005) and where a number of factors are implicated in patterns of ‘income–rent mismatching’. These include ongoing shifts in public housing assistance; issues concerning eligibility for rent assistance; ‘supply’ factors, such as loss of low-cost rental stock through upgrading and/or transfer to owner-occupied housing; patterns of supply and demand driven largely by middle- to high-income owner-investors and renters; and patterns of housing need among low-income households for whom affordable housing is not appropriate. In formulating a way of approaching the analysis of ‘risk-assessment’ in rental housing management, this study has applied three sociological perspectives on risk: Beck’s (1992) formulation of risk society as entailing processes of ‘individualisation’; a socio-cultural perspective which emphasises the situated nature of perceptions of risk; and a perspective which has drawn attention to different modes of institutional governance of subjects, as ‘carriers of specific indicators of risk’. The private rental market was viewed as a social institution, and the research strategy was informed by ‘institutional ethnography’ as a method of enquiry. The study was based on interviews with property managers, real estate industry representatives, tenant advocates and community housing providers. The primary focus of inquiry was on ‘the moment of allocation’. Six local areas across metropolitan and regional Queensland, New South Wales, and South Australia were selected as case study localities. In terms of the main findings, it is evident that access to private rental housing is not just a matter of ‘supply and demand’. It is also about assessment of risk among applicants. Risk – perceived or actual – is thus a critical factor in deciding who gets housed, and how. Risk and its assessment matter in the context of housing provision and in the development of policy responses. The outcomes from this study also highlight a number of salient points: 1.There are two principal forms of risk associated with property management: financial risk and risk of litigation. 2. Certain tenant characteristics and/or circumstances – ability to pay and ability to care for the rented property – are the main factors focused on in assessing risk among applicants for rental housing. Signals of either ‘(in)ability to pay’ and/or ‘(in)ability to care for the property’ are almost always interpreted as markers of high levels of risk. 3. The processing of tenancy applications entails a complex and variable mix of formal and informal strategies of risk-assessment and allocation where sorting (out), ranking, discriminating and handing over characterise the process. 4. In the eyes of property managers, ‘suitable’ tenants can be conceptualised as those who are resourceful, reputable, competent, strategic and presentable. 5. Property managers clearly articulated concern about risks entailed in a number of characteristics or situations. Being on a low income was the principal and overarching factor which agents considered. Others included: - unemployment - ‘big’ families; sole parent families - domestic violence - marital breakdown - shift from home ownership to private rental - Aboriginality and specific ethnicities - physical incapacity - aspects of ‘presentation’. The financial vulnerability of applicants in these groups can be invoked, alongside expressed concerns about compromised capacities to manage income and/or ‘care for’ the property, as legitimate grounds for rejection or a lower ranking. 6. At the level of face-to-face interaction between the property manager and applicants, more intuitive assessments of risk based upon past experience or ‘gut feelings’ come into play. These judgements are interwoven with more systematic procedures of tenant selection. The findings suggest that considerable ‘risk’ is associated with low-income status, either directly or insofar as it is associated with other forms of perceived risk, and that such risks are likely to impede access to the professionally managed private rental market. Detailed analysis suggests that opportunities for access to housing by low-income householders also arise where, for example: - the ‘local experience’ of an agency and/or property manager works in favour of particular applicants - applicants can demonstrate available social support and financial guarantors - an applicant’s preference or need for longer-term rental is seen to provide a level of financial security for the landlord - applicants are prepared to agree to specific, more stringent conditions for inspection of properties and review of contracts - the particular circumstances and motivations of landlords lead them to consider a wider range of applicants - In particular circumstances, property managers are prepared to give special consideration to applicants who appear worthy, albeit ‘risky’. The strategic actions of demonstrating and documenting on the part of vulnerable (low-income) tenant applicants can improve their chances of being perceived as resourceful, capable and ‘savvy’. Such actions are significant because they help to persuade property managers not only that the applicant may have sufficient resources (personal and material) but that they accept that the onus is on themselves to show they are reputable, and that they have valued ‘competencies’ and understand ‘how the system works’. The parameters of the market do shape the processes of risk-assessment and, ultimately, the strategic relation of power between property manager and the tenant applicant. Low vacancy rates and limited supply of lower-cost rental stock, in all areas, mean that there are many more tenant applicants than available properties, creating a highly competitive environment for applicants. The fundamental problem of supply is an aspect of the market that severely limits the chances of access to appropriate and affordable housing for low-income rental housing applicants. There is recognition of the impact of this problem of supply. The study indicates three main directions for future focus in policy and program development: providing appropriate supports to tenants to access and sustain private rental housing, addressing issues of discrimination and privacy arising in the processes of selecting suitable tenants, and addressing problems of supply.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Modern machines are complex and often required to operate long hours to achieve production targets. The ability to detect symptoms of failure, hence, forecasting the remaining useful life of the machine is vital to prevent catastrophic failures. This is essential to reducing maintenance cost, operation downtime and safety hazard. Recent advances in condition monitoring technologies have given rise to a number of prognosis models that attempt to forecast machinery health based on either condition data or reliability data. In practice, failure condition trending data are seldom kept by industries and data that ended with a suspension are sometimes treated as failure data. This paper presents a novel approach of incorporating historical failure data and suspended condition trending data in the prognostic model. The proposed model consists of a FFNN whose training targets are asset survival probabilities estimated using a variation of Kaplan-Meier estimator and degradation-based failure PDF estimator. The output survival probabilities collectively form an estimated survival curve. The viability of the model was tested using a set of industry vibration data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate whether the two 2 zero cost portfolios, SMB and HML, have the ability to predict economic growth for markets investigated in this paper. Our findings show that there are only a limited number of cases when the coefficients are positive and significance is achieved in an even more limited number of cases. Our results are in stark contrast to Liew and Vassalou (2000) who find coefficients to be generally positive and of a similar magnitude. We go a step further and also employ the methodology of Lakonishok, Shleifer and Vishny (1994) and once again fail to support the risk-based hypothesis of Liew and Vassalou (2000). In sum, we argue that search for a robust economic explanation for firm size and book-to-market equity effects needs sustained effort as these two zero cost portfolios do not represent economically relevant risk.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Skid resistance is a condition parameter characterising the contribution that a road makes to the friction between a road surface and a vehicle tyre. Studies of traffic crash histories around the world have consistently found that a disproportionate number of crashes occur where the road surface has a low level of surface friction and/or surface texture, particularly when the road surface is wet. Various research results have been published over many years and have tried to quantify the influence of skid resistance on accident occurrence and to characterise a correlation between skid resistance and accident frequency. Most of the research studies used simple statistical correlation methods in analysing skid resistance and crash data.----- ------ Preliminary findings of a systematic and extensive literature search conclude that there is rarely a single causation factor in a crash. Findings from research projects do affirm various levels of correlation between skid resistance and accident occurrence. Studies indicate that the level of skid resistance at critical places such as intersections, curves, roundabouts, ramps and approaches to pedestrian crossings needs to be well maintained.----- ----- Management of risk is an integral aspect of the Queensland Department of Main Roads (QDMR) strategy for managing its infrastructure assets. The risk-based approach has been used in many areas of infrastructure engineering. However, very limited information is reported on using risk-based approach to mitigate crash rates related to road surface. Low skid resistance and surface texture may increase the risk of traffic crashes.----- ----- The objectives of this paper are to explore current issues of skid resistance in relation to crashes, to provide a framework of probability-based approach to be adopted by QDMR in assessing the relationship between crash accidents and pavement properties, and to explain why the probability-based approach is a suitable tool for QDMR in order to reduce accident rates due to skid resistance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Estimating and predicting degradation processes of engineering assets is crucial for reducing the cost and insuring the productivity of enterprises. Assisted by modern condition monitoring (CM) technologies, most asset degradation processes can be revealed by various degradation indicators extracted from CM data. Maintenance strategies developed using these degradation indicators (i.e. condition-based maintenance) are more cost-effective, because unnecessary maintenance activities are avoided when an asset is still in a decent health state. A practical difficulty in condition-based maintenance (CBM) is that degradation indicators extracted from CM data can only partially reveal asset health states in most situations. Underestimating this uncertainty in relationships between degradation indicators and health states can cause excessive false alarms or failures without pre-alarms. The state space model provides an efficient approach to describe a degradation process using these indicators that can only partially reveal health states. However, existing state space models that describe asset degradation processes largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires that failures and inspections only happen at fixed intervals. The discrete state assumption entails discretising continuous degradation indicators, which requires expert knowledge and often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This research proposes a Gamma-based state space model that does not have discrete time, discrete state, linear and Gaussian assumptions to model partially observable degradation processes. Monte Carlo-based algorithms are developed to estimate model parameters and asset remaining useful lives. In addition, this research also develops a continuous state partially observable semi-Markov decision process (POSMDP) to model a degradation process that follows the Gamma-based state space model and is under various maintenance strategies. Optimal maintenance strategies are obtained by solving the POSMDP. Simulation studies through the MATLAB are performed; case studies using the data from an accelerated life test of a gearbox and a liquefied natural gas industry are also conducted. The results show that the proposed Monte Carlo-based EM algorithm can estimate model parameters accurately. The results also show that the proposed Gamma-based state space model have better fitness result than linear and Gaussian state space models when used to process monotonically increasing degradation data in the accelerated life test of a gear box. Furthermore, both simulation studies and case studies show that the prediction algorithm based on the Gamma-based state space model can identify the mean value and confidence interval of asset remaining useful lives accurately. In addition, the simulation study shows that the proposed maintenance strategy optimisation method based on the POSMDP is more flexible than that assumes a predetermined strategy structure and uses the renewal theory. Moreover, the simulation study also shows that the proposed maintenance optimisation method can obtain more cost-effective strategies than a recently published maintenance strategy optimisation method by optimising the next maintenance activity and the waiting time till the next maintenance activity simultaneously.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ability to accurately predict the remaining useful life of machine components is critical for machine continuous operation and can also improve productivity and enhance system’s safety. In condition-based maintenance (CBM), maintenance is performed based on information collected through condition monitoring and assessment of the machine health. Effective diagnostics and prognostics are important aspects of CBM for maintenance engineers to schedule a repair and to acquire replacement components before the components actually fail. Although a variety of prognostic methodologies have been reported recently, their application in industry is still relatively new and mostly focused on the prediction of specific component degradations. Furthermore, they required significant and sufficient number of fault indicators to accurately prognose the component faults. Hence, sufficient usage of health indicators in prognostics for the effective interpretation of machine degradation process is still required. Major challenges for accurate longterm prediction of remaining useful life (RUL) still remain to be addressed. Therefore, continuous development and improvement of a machine health management system and accurate long-term prediction of machine remnant life is required in real industry application. This thesis presents an integrated diagnostics and prognostics framework based on health state probability estimation for accurate and long-term prediction of machine remnant life. In the proposed model, prior empirical (historical) knowledge is embedded in the integrated diagnostics and prognostics system for classification of impending faults in machine system and accurate probability estimation of discrete degradation stages (health states). The methodology assumes that machine degradation consists of a series of degraded states (health states) which effectively represent the dynamic and stochastic process of machine failure. The estimation of discrete health state probability for the prediction of machine remnant life is performed using the ability of classification algorithms. To employ the appropriate classifier for health state probability estimation in the proposed model, comparative intelligent diagnostic tests were conducted using five different classifiers applied to the progressive fault data of three different faults in a high pressure liquefied natural gas (HP-LNG) pump. As a result of this comparison study, SVMs were employed in heath state probability estimation for the prediction of machine failure in this research. The proposed prognostic methodology has been successfully tested and validated using a number of case studies from simulation tests to real industry applications. The results from two actual failure case studies using simulations and experiments indicate that accurate estimation of health states is achievable and the proposed method provides accurate long-term prediction of machine remnant life. In addition, the results of experimental tests show that the proposed model has the capability of providing early warning of abnormal machine operating conditions by identifying the transitional states of machine fault conditions. Finally, the proposed prognostic model is validated through two industrial case studies. The optimal number of health states which can minimise the model training error without significant decrease of prediction accuracy was also examined through several health states of bearing failure. The results were very encouraging and show that the proposed prognostic model based on health state probability estimation has the potential to be used as a generic and scalable asset health estimation tool in industrial machinery.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Engineering asset management (EAM) is a broad discipline and the EAM functions and processes are characterized by its distributed nature. However, engineering asset nowadays mostly relies on self-maintained experiential rule bases and periodic maintenance, which is lacking a collaborative engineering approach. This research proposes a collaborative environment integrated by a service center with domain expertise such as diagnosis, prognosis, and asset operations. The collaborative maintenance chain combines asset operation sites, service center (i.e., maintenance operation coordinator), system provider, first tier collaborators, and maintenance part suppliers. Meanwhile, to realize the automation of communication and negotiation among organizations, multiagent system (MAS) technique is applied to enhance the entire service level. During the MAS design processes, this research combines Prometheus MAS modeling approach with Petri-net modeling methodology and unified modeling language to visualize and rationalize the design processes of MAS. The major contributions of this research include developing a Petri-net enabled Prometheus MAS modeling methodology and constructing a collaborative agent-based maintenance chain framework for integrated EAM.