1000 resultados para Rietveld method
Resumo:
Este trabalho apresenta um estudo sistemático sobre a síntese e caracterização de pós de Na2TiSiO5. Foram estudadas as propriedades estruturais e morfológicas dos pós por intermédio de difração de raios X, espectroscopia Raman e microscopia eletrônica de varredura. As amostras foram produzidas por meio de duas rotas sintéticas distintas baseadas em métodos tipo Pechini e submetidas a diferentes tratamentos térmicos. Medidas de espectroscopia Raman nas resinas poliméricas foram feitas visando verificar a influência das diferentes rotas utilizadas na síntese dos pós. Com os dados de difração de raios X foi feito um estudo da evolução das fases cristalográficas. A estrutura cristalina das amostras foi analisada por meio de refinamento Rietveld. Por fim, a morfologia dos compostos de Na2TiSiO5 foi examinada por microscopia eletrônica de varredura. Os resultados obtidos mostraram que é possível melhorar a qualidade das amostras de Na2TiSiO5 alterando-se a rota sintética utlizada.
Resumo:
A series of powdered cobalt ferrites, CoxFe3-xO4 with 0.66 <= x< 1.00 containing different amounts of Fe-II, were synthesized by a mild procedure, and their Fe and Co site occupancies and structural characteristics were explored using X-ray anomalous scattering and the Rietveld refinement method. The dissolution kinetics, measured in 0.1 M oxalic acid aqueous solution at 70 degrees C, indicate in all cases the operation of a contracting volume rate law. The specific rates increased with the Fell content following approximately a second-order polynomial expression. This result suggests that the transfer of Fe-III controls the dissolution rate, and that the leaching of a first layer of ions Co-II and Fe-II leaves exposed a surface enriched in slower dissolving octahedral Fe-III ions. Within this model, inner vicinal lattice Fe-II accelerates the rate of Fe-III transfer via internal electron hopping. A chain mechanism, involving successive electron transfers, fits the data very well. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
A recent and innovative method to include Ti into the columbite precursor has permitted to synthesize 0.9PMN-0.1PT powders with high homogeneity. The present work describes this methodology, named modified columbite method, showing that the reaction between MN(T)and PbO at 800 degrees C for 2 h results in perovskite single-phase. The crystal structure alterations in the columbite and perovskite phases obtained by this methodology and the effects of potassium doping were investigated by the Rietveld method. Changes in the powder morphology, density and weight loss during the sintering process were also studied. Conclusively, potassium does not affect significantly the perovskite amount, but reduces the particle and grain sizes. This dopant also changes the relaxor behavior of 0.9PMN-0.1 PT ceramic, reducing the dielectric loss and enhancing the diffuseness of the phase transition. (C) 2005 Published by Elsevier Ltd and Techna Gronp S.r.l.
Resumo:
Single-phase perovskite 0.9Pb(Mg1/3Nb2/3)O-3-0.1PbTiO(3) (PMN-PT) powders were prepared by using a Ti-modified columbite precursor (MNT) obtained by the polymeric precursor method. The innovation consists in the preparation of Ti-modified columbite in order to react directly with a stoichiometric amount of PbO to obtain pyrochlore-free PMN-PT powders. It has been shown that titanium oxide forms a solid solution with columbite (MN) and does not affect the obtaining of a single-phase columbite precursor. Thus, a high amount of perovskite phase can be obtained by reaction with PbO at 800 degreesC for 2 h. Effects of K and Li additives on the structure of MNT and PMN-PT were studied. X-ray diffraction studies were carried out to verify the phase formation at each processing step and these data were used for structural refinement by the Rietveld method. Both K and Li additives increase the crystallinity of MNT powders, being this effect more intense for the Li-doped samples. For PMN-PT samples the additives cause an insignificant decrease in the amount of perovskite phase. The morphology of the PMN-PT powder depends on the type of the additive. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
The effect of LiNbO3 and KNbO3 seeds on the microstructure and dielectric characteristics of PMN ceramic prepared by columbite route have been investigated with the addition of 0, 1, and 2-wt% of seeds. X-ray diffraction, Scanning Electron Microscopy and an impedance analyzer were used to characterize the influence of seeds on physical characteristics and dielectric properties of PMN. LiNbO3 -seeded PMN samples present a significant increase in the amount of perovskite phase. The addition of LiNbO3 seeds in sintered PMN ceramics at 1100degreesC during 4 h causes a decrease in the porosity and the amount of pyrochlore phase. Weight losses during sintering of PMN ceramics are suppressed more significantly for LiNbO3 -seeded PMN. T-m of PMN ceramics changes with seeds concentration. KNbO3 seeds displace T-m to lower temperature whereas LiNbO3 causes its elevation. Dielectric constants of approximately 13,000 at 1 kHz was measured at -5degreesC in PMN ceramics with 1-wt% of LiNbO3 seeds.
Resumo:
Surface modifications have been applied in endosteal bone devices in order to improve the osseointegration through direct contact between neoformed bone and the implant without an intervening soft tissue layer. Surface characteristics of titanium implants have been modified by addictive methods, such as metallic titanium, titanium oxide and hydroxyapatite powder plasma spray, as well as by subtractive methods, such as acid etching, acid etching associated with sandblasting by either AlO2 or TiO2, and recently by laser ablation. Surface modification for dental and medical implants can be obtained by using laser irradiation technique where its parameters like repetition rate, pulse energy, scanning speed and fluency must be taken into accounting to the appropriate surface topography. Surfaces of commercially pure Ti (cpTi) were modified by laser Nd:YVO4 in nine different parameters configurations, all under normal atmosphere. The samples were characterized by SEM and XRD refined by Rietveld method. The crystalline phases alpha Ti, beta Ti, Ti6O, Ti3O and TiO were formed by the melting and fast cooling processes during irradiation. The resulting phases on the irradiated surface were correlated with the laser beam parameters: the aim of the present work was to control titanium oxides formations in order to improve implants osseointegration by using a laser irradiation technique which is of great importance to biomaterial devices due to being a clean and reproducible process. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Using the Rietveld method, phases of ceria-doped zirconia, calcined at temperatures of 600 and 900 degrees C, were quantitatively analysed for different concentrations of ceria. The results show that the stabilization of zirconia depends on the dopant concentration and calcination temperature. Moreover, the theoretical calculation using the ab initio Hartree-Fock-Roothaan method indicates that the most stable phases for ceria-stabilized zirconia are cubic or tetragonal, in accordance with experimental results. (C) 1999 Kluwer Academic Publishers.
Resumo:
Gallium-doped zinc oxide (ZnO:Ga 1, 2 3, 4 and 5 at%) samples were prepared in powder form by modifying the Pechini method. The formation of zinc gallate (ZnGa2O4) With the spinel crystal structure was observed even in ZnO:Ga 1 at% by X-ray diffraction. The presence of ZnGa2O4 in ZnO:Ga samples was also evidenced by luminescence spectroscopy through its blue emission at 430 nm, assigned to charge transfer between Ga3+ at regular octahedral symmetry and its surrounding O2- ions. The amount of ZnGa2O4 increases as the dopant concentration increases, as observed by the quantitative phase analysis by the Rietveld method. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Nanostructured KSr2Nb5O15 oxide was synthesized by the polymeric precursor method, a chemical synthesis route based on the Pechini's method. The X-ray diffraction (XRD) pattern of the calcined powder at 1150 degreesC were performed in the angular range 5 less than or equal to 20 less than or equal to 120degrees with a 0.02degrees step and a fixed counting time of 30 s. The XRD data were analyzed by the Rietveld refinements using the FullProf software. The results C showed a tetragonal system with the tetragonal tungsten bronze structure (TTB) type (a = 12.4585 (2) Angstrom and c = 3.9423 (6) Angstrom, V = 611,90 (2) Angstrom). In this work, the sites occupancy by the K+ and Sr2+ cations on the TTB type structure were determined. The thermal parameters (B) were analyzed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
PbMg1/3Nb2/3O3 (PMN) prepared by organic solution of citrates was analyzed by the Rietveld method to determine the influence of seeds and dopants on the perovskite and pyrochlore phase formation. It was observed that pyrochlore phase formation increases with an increase in calcination time when no additives are included during the preparation. It was also observed that a greater amount of perovskite phase appeared in doped or seeded samples. The fraction of perovskite phase increased from 88 mol % in pure sample to ∼95 mol % in doped and seeded samples calcined at 800°C for 1 h. It is clear that the addition of dopants or seeds during PMN preparation can enhance the formation of perovskite phase.
Resumo:
The crystal structure of the Aurivillius compound Bi2BaTa2O9 prepared via the chemical route was determined by direct methods using EXPO97, and refined using the Rietveld method with conventional X-ray diffraction data. The structure was found to be tetragonal (space group I4/mmm, number 139) and Z = 2, isomorphic of the Bi2BaNb2O9 reported by Blake and co-workers in the literature (1997). Two refinements were performed using the two asymmetry functions of DBWS-9807 (release 20/May/99). The unit cell for each case are: a = 3.932 22(6) Å, c = 25.5053(6) Å (RA) and a = 3.93250(7) Å, c = 25.5069(6) Å (RCF). The differences for atom positions, interatomic distances and angles are in the range of one standard deviation. Final agreements factors are: Rwp = 7.97%, S = 1.84, RBragg = 4.28%(RA), Rwp = 7.98%, S = 1.84, RBragg = 4.30% (RCF). The occupancies of Ba and Bi in site 2b were refined but constrained to have their summation equal to 1.00. The same constraints were applied to the Ba and Bi of the 4e site. The results show that on site 2b there are 70% of Ba and 30% of Bi and on the site 4e there are 82% of Bi and 18% of Ba. The charge equilibrium is maintained for one standard deviation of the site occupancies. © 2000 International Centre for Diffraction Data.
Resumo:
Different (Sn,Ti)O2 compositions were sintered at 1450 °C for 2 h with the purpose of investigating their sintering and mass transport properties. Highly dense ceramics were obtained and their structural properties studied by X-ray diffraction and scanning electron microscopy. The changes in lattice parameters were analyzed by the Rietveld method and two mass transport mechanisms were observed during sintering in different temperature ranges, evidenced by the linear shrinkage rate as a function of temperature. The effect of the concentration of TiO2 on mass transport and densiffication during sintering was analyzed by considering the intrinsic defects. System densiffication was attributed to a mass transport mechanism in the SnO2 matrix, caused by the presence of TiO2, which formed a solid solution phase. The change in the mass transport mechanism was attributed to chemical bonding between SnO2 and TiO2, which improves ionic difusion as the concentration of TiO2 increased in (Sn,Ti)O2 compositions. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The complex perovskite compound 0.9PbMg 1/3Nb 2/3O 3-0.1PbTiO 3 is one of the most promising relaxor ceramic because the addition of lead titanate increases T m, by about 5°C/mol% from intrinsic T m value for pure PMN (near -7 to -15°C). A Ti-modified columbite precursor was used to prepare PMN-PT powders containing single perovskite phase. This variation on columbite route includes Ti insertion in MgNb 2O 6 orthorhombic structure so that individual PT synthesis becomes unnecessary. Furthermore, effects of Li additive on columbite and PMN-PT structures were studied by XRD to verify the phase formation at each processing step. XRD data were also used for the structural refinement by Rietveld method. The additive acts increasing columbite powders crystallinity, and the amount of perovskite phase was insignificantly decreased by lithium addition. By SEM micrographs it was observed that Li presence in PMN-PT powders leads to the formation of rounded primary particles and for lmol% of additive, the grain size is not changed, different from when this concentration is enhanced to 2mol%.
Resumo:
Pure and scandium doped-TiO2 thin films were prepared by the sol-gel process and coated by dip coating. The effects of scandium on the phase formation, optical properties and photoactivity of the TiO2 thin films were investigated. The lattice parameters and the crystallinity of the anatase phase, characterized by the Rietveld method, demonstrated that scandium doping affected the structural parameters and crystallinity of the films, modifying the absorption edge. A direct correlation was found between band gap energy and photodegradation efficiency, with lower values of band gap energy augmenting this efficiency. Moreover, a significant improvement in the catalyst's photodegradation efficiency was attained with a scandium concentration of 5.0 mol%. © 2007 Springer Science+Business Media, LLC.
Resumo:
Sr0.5Ba0.5Bi2Nb2O 9 ceramic was prepared by a conventional solid state reaction method and studied using X-ray powder diffraction and dielectric measurements. At room temperature, an orthorhombic structure was confirmed and their parameters were obtained using the Rietveld method. Dielectric properties were studied in a broad range of temperatures and frequencies. Typical relaxor behaviour was observed with strong dispersion of the complex relative dielectric permittivity. The temperature of the maximum dielectric constant Tm decreases with increasing frequency, and shifts towards higher temperature side. The activation energy Ea≈0·194±0·03 eV and freezing temperature Ta≈371±2 K values were found using the Vogel-Fulcher relationship. Conduction process in the material may be due to the hopping of charge carriers at low temperatures and small polarons and/or singly ionised oxygen vacancies at higher temperatures. © 2010 Maney Publishing.