801 resultados para Response time (computer systems)
Resumo:
While a large amount of research over the past two decades has focused on discrete abstractions of infinite-state dynamical systems, many structural and algorithmic details of these abstractions remain unknown. To clarify the computational resources needed to perform discrete abstractions, this paper examines the algorithmic properties of an existing method for deriving finite-state systems that are bisimilar to linear discrete-time control systems. We explicitly find the structure of the finite-state system, show that it can be enormous compared to the original linear system, and give conditions to guarantee that the finite-state system is reasonably sized and efficiently computable. Though constructing the finite-state system is generally impractical, we see that special cases could be amenable to satisfiability based verification techniques. ©2009 IEEE.
Resumo:
This paper presents some new criteria for uniform and nonuniform asymptotic stability of equilibria for time-variant differential equations and this within a Lyapunov approach. The stability criteria are formulated in terms of certain observability conditions with the output derived from the Lyapunov function. For some classes of systems, this system theoretic interpretation proves to be fruitful since - after establishing the invariance of observability under output injection - this enables us to check the stability criteria on a simpler system. This procedure is illustrated for some classical examples.
Resumo:
UV radiation is one of many harmful factors found in space that are detrimental to organisms on earth in space exploration. In the present work, we examined the role of antioxidant system in Nostoc sphaeroides Kutz (Cyanobacterium) and the effects of exogenously applied antioxidant molecules on its photosynthetic rate under UV-B radiation. It was found that UV-B radiation promoted the activity of antioxidant system to protect photosystem 11 (PSII) and exogenously applied antioxidant: sodium nitroprusside (SNP) and N-acetylcysteine (NAC) had an obvious protection on PSII activity under UV-B radiation. The activity of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7) and content of NIDA (malondialdehyde) and ASC (ascorbate) were improved by 0.5 mM and 1 mM SNP, but 0.1 mM SNP decreased the activity of antioxidant system. Addition of exogenous NAC decreased the activity of SOD, POD, CAT and the content MDA and ASC. In contrast, exogenously applied NAC increased GSH content. The results suggest that exogenous SNP and NAC may protect algae by different mechanisms: SNP may play double roles as both sources of reactive free radicals as well as ROS scavengers in mediating the protective role of PSII on algae under UV-B radiation. On the other hand, NAC functions as an antioxidant or precursor of glutathione, which could protect PSII directly from UV-B radiation. (c) 2007 COSPAR, Published by Elsevier Ltd. All rights reserved.
Resumo:
In this paper, a Lyapunov function candidate is introduced for multivariable systems with inner delays, without assuming a priori stability for the nondelayed subsystem. By using this Lyapunov function, a controller is deduced. Such a controller utilizes an input-output description of the original system, a circumstance that facilitates practical applications of the proposed approach.
Resumo:
The demands of the process of engineering design, particularly for structural integrity, have exploited computational modelling techniques and software tools for decades. Frequently, the shape of structural components or assemblies is determined to optimise the flow distribution or heat transfer characteristics, and to ensure that the structural performance in service is adequate. From the perspective of computational modelling these activities are typically separated into: • fluid flow and the associated heat transfer analysis (possibly with chemical reactions), based upon Computational Fluid Dynamics (CFD) technology • structural analysis again possibly with heat transfer, based upon finite element analysis (FEA) techniques.
Resumo:
Scepticism over stated preference surveys conducted online revolves around the concerns over “professional respondents” who might rush through the questionnaire without sufficiently considering the information provided. To gain insight on the validity of this phenomenon and test the effect of response time on choice randomness, this study makes use of a recently conducted choice experiment survey on ecological and amenity effects of an offshore windfarm in the UK. The positive relationship between self-rated and inferred attribute attendance and response time is taken as evidence for a link between response time and cognitive effort. Subsequently, the generalised multinomial logit model is employed to test the effect of response time on scale, which indicates the weight of the deterministic relative to the error component in the random utility model. Results show that longer response time increases scale, i.e. decreases choice randomness. This positive scale effect of response time is further found to be non-linear and wear off at some point beyond which extreme response time decreases scale. While response time does not systematically affect welfare estimates, higher response time increases the precision of such estimates. These effects persist when self-reported choice certainty is controlled for. Implications of the results for online stated preference surveys and further research are discussed.
Resumo:
In a recent paper (Automatica 49 (2013) 2860–2866), the Wirtinger-based inequality has been introduced to derive tractable stability conditions for time-delay or sampled-data systems. We point out that there exist two errors in Theorem 8 for the stability analysis of sampled-data systems, and the correct theorem is presented.
Resumo:
It is generally challenging to determine end-to-end delays of applications for maximizing the aggregate system utility subject to timing constraints. Many practical approaches suggest the use of intermediate deadline of tasks in order to control and upper-bound their end-to-end delays. This paper proposes a unified framework for different time-sensitive, global optimization problems, and solves them in a distributed manner using Lagrangian duality. The framework uses global viewpoints to assign intermediate deadlines, taking resource contention among tasks into consideration. For soft real-time tasks, the proposed framework effectively addresses the deadline assignment problem while maximizing the aggregate quality of service. For hard real-time tasks, we show that existing heuristic solutions to the deadline assignment problem can be incorporated into the proposed framework, enriching their mathematical interpretation.
Resumo:
Embedded real-time applications increasingly present high computation requirements, which need to be completed within specific deadlines, but that present highly variable patterns, depending on the set of data available in a determined instant. The current trend to provide parallel processing in the embedded domain allows providing higher processing power; however, it does not address the variability in the processing pattern. Dimensioning each device for its worst-case scenario implies lower average utilization, and increased available, but unusable, processing in the overall system. A solution for this problem is to extend the parallel execution of the applications, allowing networked nodes to distribute the workload, on peak situations, to neighbour nodes. In this context, this report proposes a framework to develop parallel and distributed real-time embedded applications, transparently using OpenMP and Message Passing Interface (MPI), within a programming model based on OpenMP. The technical report also devises an integrated timing model, which enables the structured reasoning on the timing behaviour of these hybrid architectures.
Resumo:
Database query languages on relations (for example SQL) make it possible to join two relations. This operation is very common in desktop/server database systems but unfortunately query processing systems in networked embedded computer systems currently do not support this operation; specifically, the query processing systems TAG, TinyDB, Cougar do not support this. We show how a prioritized medium access control (MAC) protocol can be used to efficiently execute the database operation join for networked embedded computer systems where all computer nodes are in a single broadcast domain.
Resumo:
Task scheduling is one of the key mechanisms to ensure timeliness in embedded real-time systems. Such systems have often the need to execute not only application tasks but also some urgent routines (e.g. error-detection actions, consistency checkers, interrupt handlers) with minimum latency. Although fixed-priority schedulers such as Rate-Monotonic (RM) are in line with this need, they usually make a low processor utilization available to the system. Moreover, this availability usually decreases with the number of considered tasks. If dynamic-priority schedulers such as Earliest Deadline First (EDF) are applied instead, high system utilization can be guaranteed but the minimum latency for executing urgent routines may not be ensured. In this paper we describe a scheduling model according to which urgent routines are executed at the highest priority level and all other system tasks are scheduled by EDF. We show that the guaranteed processor utilization for the assumed scheduling model is at least as high as the one provided by RM for two tasks, namely 2(2√−1). Seven polynomial time tests for checking the system timeliness are derived and proved correct. The proposed tests are compared against each other and to an exact but exponential running time test.
Resumo:
Un résumé en français est également disponible.