999 resultados para Resource Reallocation
Resumo:
Key resource areas (KRAs), defined as dry season foraging zones for herbivores, were studied relative to the more extensive outlying rangeland areas (non-KRAs) in Kenya. Field surveys with pastoralists, ranchers, scientists and government officials delineated KRAs on the ground. Identified KRAs were mapped based on global positioning and local experts' information on KRAs accessibility and ecological attributes. Using the map of known KRAs and non-KRAs, we examined characteristics of soils, climate, topography, land use/cover attributes at KRAs relative to non-KRAs. How and why do some areas (KRAs) support herbivores during droughts when forage is scarce in other areas of the landscape? We hypothesized that KRAs have fundamental ecological and socially determined attributes that enable them to provide forage during critical times and we sought to characterize some of those attributes in this study. At the landscape level, KRAs took different forms based on forage availability during the dry season but generally occurred in locations of the landscape with aseasonal water availability and/or difficult to access areas during wet season forage abundance. Greenness trends for KRAs versus non-KRAs were evaluated with a 22-year dataset of Normalized Difference Vegetation Index (NDVI). Field surveys of KRAs provided qualitative information on KRAs as dry season foraging zones. At the scale of the study, soil attributes did not significantly differ for KRAs compared to non-KRAs. Slopes of KRA were generally steeper compared to non-KRAs and elevation was higher at KRAs. Field survey respondents indicated that animals and humans generally avoid difficult to access hilly areas using them only when all other easily accessible rangeland is depleted of forage during droughts. Understanding the nature of KRAs will support identification, protection and restoration of critical forage hotspots for herbivores by strengthening rangeland inventory, monitoring, policy formulation, and conservation efforts to improve habitats and human welfare. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Demography theory suggests that high gender diversity leads to high turnover. As turnover is costly for organizations, we examined whether HR policies and practices influence the expected gender diversity-turnover relationship. Survey data were collected from 198 HR decision makers at publicly listed organizations. We found that HR policies and practices that are supportive of diversity moderate the gender diversity-turnover relationship, such that high gender diversity leads to low turnover in organizations with many diversity supportive policies and practices. Results suggest that organizations can avoid the negative consequences of high gender diversity by implementing diversity supportive HR polices and practices.
Resumo:
The increasing scarcity of water in the world, along with rapid population increase in urban areas, gives reason for concern and highlights the need for integrating water and wastewater management practices. The uncontrolled growth in urban areas has made planning, management and expansion of water and wastewater infrastructure systems very difficult and expensive. In order to achieve sustainable wastewater treatment and promote the conservation of water and nutrient resources, this chapter advocates the need for a closed-loop treatment system approach, and the transformation of the traditional linear treatment systems into integrated cyclical treatment systems. The recent increased understanding of integrated resource management and a shift towards sustainable management and planning of water and wastewater infrastructure are also discussed.
Resumo:
Many infrastructure and necessity systems such as electricity and telecommunication in Europe and the Northern America were used to be operated as monopolies, if not state-owned. However, they have now been disintegrated into a group of smaller companies managed by different stakeholders. Railways are no exceptions. Since the early 1980s, there have been reforms in the shape of restructuring of the national railways in different parts of the world. Continuous refinements are still conducted to allow better utilisation of railway resources and quality of service. There has been a growing interest for the industry to understand the impacts of these reforms on the operation efficiency and constraints. A number of post-evaluations have been conducted by analysing the performance of the stakeholders on their profits (Crompton and Jupe 2003), quality of train service (Shaw 2001) and engineering operations (Watson 2001). Results from these studies are valuable for future improvement in the system, followed by a new cycle of post-evaluations. However, direct implementation of these changes is often costly and the consequences take a long period of time (e.g. years) to surface. With the advance of fast computing technologies, computer simulation is a cost-effective means to evaluate a hypothetical change in a system prior to actual implementation. For example, simulation suites have been developed to study a variety of traffic control strategies according to sophisticated models of train dynamics, traction and power systems (Goodman, Siu and Ho 1998, Ho and Yeung 2001). Unfortunately, under the restructured railway environment, it is by no means easy to model the complex behaviour of the stakeholders and the interactions between them. Multi-agent system (MAS) is a recently developed modelling technique which may be useful in assisting the railway industry to conduct simulations on the restructured railway system. In MAS, a real-world entity is modelled as a software agent that is autonomous, reactive to changes, able to initiate proactive actions and social communicative acts. It has been applied in the areas of supply-chain management processes (García-Flores, Wang and Goltz 2000, Jennings et al. 2000a, b) and e-commerce activities (Au, Ngai and Parameswaran 2003, Liu and You 2003), in which the objectives and behaviour of the buyers and sellers are captured by software agents. It is therefore beneficial to investigate the suitability or feasibility of applying agent modelling in railways and the extent to which it might help in developing better resource management strategies. This paper sets out to examine the benefits of using MAS to model the resource management process in railways. Section 2 first describes the business environment after the railway 2 Modelling issues on the railway resource management process using MAS reforms. Then the problems emerge from the restructuring process are identified in section 3. Section 4 describes the realisation of a MAS for railway resource management under the restructured scheme and the feasible studies expected from the model.
Resumo:
The use of feedback technologies, in the form of products such as Smart Meters, is increasingly seen as the means by which 'consumers' can be made aware of their patterns of resource consumption, and to then use this enhanced awareness to change their behaviour to reduce the environmental impacts of their consumption. These technologies tend to be single-resource focused (e.g. on electricity consumption only) and their functionality defined by persons other than end-users (e.g. electricity utilities). This paper presents initial findings of end-users' experiences with a multi-resource feedback technology, within the context of sustainable housing. It proposes that an understanding of user context, supply chain management and market diffusion issues are important design considerations that contribute to technology 'success'.
Resumo:
Real-world business processes are resource-intensive. In work environments human resources usually multitask, both human and non-human resources are typically shared between tasks, and multiple resources are sometimes necessary to undertake a single task. However, current Business Process Management Systems focus on task-resource allocation in terms of individual human resources only and lack support for a full spectrum of resource classes (e.g., human or non-human, application or non-application, individual or teamwork, schedulable or unschedulable) that could contribute to tasks within a business process. In this paper we develop a conceptual data model of resources that takes into account the various resource classes and their interactions. The resulting conceptual resource model is validated using a real-life healthcare scenario.
Resumo:
The authors currently engage in two projects to improve human-computer interaction (HCI) designs that can help conserve resources. The projects explore motivation and persuasion strategies relevant to ubiquitous computing systems that bring real-time consumption data into the homes and hands of residents in Brisbane, Australia. The first project seeks to increase understanding among university staff of the tangible and negative effects that excessive printing has on the workplace and local environment. The second project seeks to shift attitudes toward domestic energy conservation through software and hardware that monitor real-time, in situ electricity consumption in homes across Queensland. The insights drawn from these projects will help develop resource consumption user archetypes, providing a framework linking people to differing interface design requirements.