974 resultados para Resonance Fluorescence-spectrum
Resumo:
Nanosized ZnO was prepared by polyol synthesis. Fluorescence spectrum of the ZnO colloid at varying pump intensities was studied. The powder was extracted and characterized by XRD and BET. The extracted powder was screen printed on glass substrates using ethyl cellulose as binder and turpinol as solvent. Coherent back scattering studies were performed on the screen printed sample which showed evidence of weak localization. The screen printed pattern showed strong UV emission.
Resumo:
The thermoluminescence (TL) peak in natural sodalite near 230 degrees C which appears only after submitted to thermal treatments and to gamma irradiation has been studied in parallel with electron paramagnetic resonance (EPR) spectrum appearing under the same procedure This study revealed a full correlation between the 230 degrees C TL peak and the eleven hyperfine lines from EPR spectrum In both case the centers disappear at the same temperature and are restored after gamma irradiation A complete model for the 230 C TL peak is presented and discussed In addition to the correlation and TL model specific characteristics of the TL peaks are described (C) 2010 Elsevier B V All rights reserved
Resumo:
We investigated the effects of photodynamic therapy (PDT) outcome when combining three laser systems that produce light in three different wavelengths (600, 630, and 660 nm). Cooperative as well as independent effects can be observed. We compared the results of the combined wavelengths of light with the effect of single laser for the excitation of the photosensitizer. In the current experiment, the used photosensitizer was Photogem (R) (1.5 mg/kg). Combining two wavelengths for PDT, their cumulative dose and different penetrability may change the overall effect of the fluence of light, which can be effective for increasing the depth of necrosis. This evaluation was performed by comparing the depth and specific aspect of necrosis obtained by using single and dual wavelengths for irradiation of healthy liver of male Wistar rats. We used 15 animals and divided them in five groups of three animals. First, Photogem (R) was administered; follow by measurement of the fluorescence spectrum of the liver before PDT to confirm the level of accumulation of photosensitizer in the tissue. After that, an area of 1 cm(2) of the liver was illuminated using different laser combinations. Qualitative analysis of the necrosis was carried out through histological and morphological study. [GRAPHICS] (a) - microscopic images of rat liver cells, (b) - superficial necrosis caused by PDT using dual-wavelength illumination, (c) - neutrophilic infiltration around the vessel inside the necrosis, and (d) - neutrophilic infiltration around the vessel between necrosis and live tissue (C) 2011 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA
Resumo:
The evaluation of graft function at various stages after transplantation is relevant, particularly at the moment of organ harvest, when a decision must be made whether to use the organ. Autofluorescence spectroscopy is noninvasive technique to monitor the metabolic condition of a liver graft throughout its course, from an initial evaluation in the donor, through cold ischemia transportation, to reperfusion and reoxygenation in the recipient. Preliminary results are presented in six liver transplantations spanning the periods from liver harvest to implant. The laser-induced fluorescence spectrum at 532-mn excitation was investigated before cold perfusion (autofluorescence), during cold ischemia, at the back table procedure, as well as 5 and 60 minutes after reperfusion. The results showed that the fluorescence analysis was sensitive to changes during the transplantation procedure. Fluorescence spectroscopy potentially provides a real-time, noninvasive technique to monitor liver graft function. The information could potentially be valuable for surgical decisions and transplant success.
Resumo:
In this paper, we report the photodegradation of three different chlorine photosensitizers (Photoditazine (R), Radachlorin (R), and Foscan (R)). The photosensitizer degradation was analyzed by changes in the fluorescence spectrum during illumination. The rate of fluorescence variation was normalized to the solution absorption and the photon energy resulting in the determination of the necessary number of photons to be absorbed to induce photosensitizer photodegradation. The parameter for rate of the molecules decay, the photon fluence rate and optical properties of the solution allow us to determine the photosensitizer stability in solution during illumination. The results show that the order of susceptibility for photodegradation rate is: Radachlorin (R) < Photoditazine (R) < Foscan (R). This difference in the photodegradation rate for Foscan can be explained by the high proportion of aggregates in solution that inhibit the photo-oxidative process that impede the singlet oxygen formation. We hypothesize that there is a correlation between photodegradation rate and photodynamic efficacy witch is governed by the singlet oxygen formation responsible for the most relevant reaction of the cell death photodynamic induction. Then its is important to know the photostability of different types of drugs since the photodegradation rate, the photodegradation as well as the photodynamic efficacy are strong correlated to the oxygen concentration in the tissue.
Resumo:
Proteins have been considered important targets for reactive oxygen species. Indeed, tryptophan (W) has been shown to be a highly susceptible amino acid to many oxidizing agents, including singlet molecular oxygen [O-2 ((1)Delta(g))]. In this study, two cis- and trans-tryptophan hydroperoxide (WOOH) isomers were completely characterized by HPLC/mass spectrometry and NMR analyses as the major W-oxidation photoproducts. These photoproducts underwent thermal decay into the corresponding alcohols. Additionally, WOOHs were shown to decompose under heating or basification, leading to the formation of N-formylkynurenine (FMK). Using O-18-labeled hydroperoxides ((WOOH)-O-18-O-18), it was possible to confirm the formation of two oxygen-labeled FMK molecules derived from (WOOH)-O-18-O-18 decomposition. This result demonstrates that both oxygen atoms in FMK are derived from the hydroperoxide group. In addition, these reactions are chemiluminescent (CL), indicating a dioxetane cleavage pathway. This mechanism was confirmed since the CL spectrum of the WOOH decomposition matched the FMK fluorescence spectrum, unequivocally identifying FMK as the emitting species.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Argilas constituem uma classe de complexos micro-heterogêneos e podem ser utilizados como substrato para adsorção. O seu comportamento de sorção em fase sólida intensificada pela presença de surfactantes, argilas organofílicas, é um importante fenômeno explorado pela tecnologia ambiental para a remoção de compostos orgânicos policíclicos (hidrocarbonetos aromáticos policíclicos, HPA) da água, introduzidos no ambiente por fontes antropogênicas. Este trabalho tem por objetivo estudar o comportamento fotofísico do antraceno, como modelo de HPA, em sistemas micro-heterogêneos argila-surfactantes-íons metálicos (M(II)= Cd(II), Cu(II), Hg(II), Ni(II) e Pb(II); surfactantes: CTACl; SDS; TR-X100). Os estudos foram conduzidos pelo monitoramento na mudança das propriedades de fluorescência estática e na supressão da emissão do antraceno utilizado como sonda fluorescente. Como supressores foram utilizados os cátions metálicos: Cd(II), Cu(II), Hg(II), Ni(II) e Pb(II). O perfil do espectro de fluorescência e os resultados dos ensaios de supressão da fluorescência da sonda permitiram inferir na localização do sítio de solubilização do antraceno nos sistemas micro-heterogêneos estudados e na conseqüente organização dos mesmos.
Resumo:
The efficiency of energy transfer (ET) between Pr3+ ions in a fluoroindate glass is determined. ET rates, WET, were determined for dilute samples and the results show a dependence of WET on the Pr3+ concentration. ET processes which contribute to resonance fluorescence and frequency upconversion emission were studied. The origin of the interaction energy among the Pr3+ ions was determined to be dipole - dipole. © 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper, we report on luminescence and absorbance effects of Er+3:Au-doped tellurite glasses synthesized by a melting-quenching and heat treatment technique. After annealing times of 2.5, 5.0, 7.5, and 10.0 h, at 300 A degrees C, the gold nanoparticles (GNP) effects on the Er+3 are verified from luminescence spectra and the corresponding levels lifetime. The localized surface plasmon resonance around 800 nm produced a maximum fluorescence enhancement for the band ranging from 800 to 840 nm, corresponding to the transitions H-4(11/2) -> aEuro parts per thousand I-4(13/2) (805 nm) and S-4(3/2) -> aEuro parts per thousand I-4(13/2) (840 nm), with annealing time till 7.5 h. The measured lifetime of the levels H-4(11/2) and S-4(3/2) confirmed the lifetime reduction due to the energy transfer from the GNP to Er+3, causing an enhanced photon emission rate in these levels.
Resumo:
We report a systematic study of the localized surface plasmon resonance effects on the photoluminescence of Er3+-doped tellurite glasses containing Silver or Gold nanoparticles. The Silver and Gold nanoparticles are obtained by means of reduction of Ag ions (Ag+ -> Ag-0) or Au ions (Au3+ -> Au-0) during the melting process followed by the formation of nanoparticles by heat treatment of the glasses. Absorption and photoluminescence spectra reveal particular features of the interaction between the metallic nanoparticles and Er3+ ions. The photoluminescence enhancement observed is due to dipole coupling of Silver nanoparticles with the I-4(13/2) -> I-4(15/2) Er3+ transition and Gold nanoparticles with the H-2(11/2)-> I-4(13/2) (805 nm) and S-4(3/2) -> I-4(13/2) (840 nm) Er3+ transitions. Such process is achieved via an efficient coupling yielding an energy transfer from the nanoparticles to the Er3+ ions, which is confirmed from the theoretical spectra calculated through the decay rate. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
Resumo:
Fabrication of microstructures containing active compounds, such as fluorescent dyes and nanoparticles have been exploited in the last few years, aiming at applications from photonics to biology. Here we fabricate, using two-photon polymerization, microstructures containing the fluorescent dyes Stilbene 420, Disodium Fluorescein and Rhodamine B. The produced microstructures, containing dyes at specific sites, present good structural integrity and a broad fluorescence spectrum, from about 350 nm until 700 nm. Such spectrum can be tuned by using different excitation wavelengths and selecting the excitation position in the microstructure. These results are interesting for designing multi-doped structures, presenting tunable and broad fluorescence spectrum. (C)2012 Optical Society of America
Resumo:
ABSTRACT This works aim was to test whether LTP-like features can also be measured in cell culture and by methods that allow to analyse a alrger number of cells. A suitable method for this purpose is calcium imaging. The rationale for this approach lies in the fact that LTP/LTD are dependent on changes in intracellular calcium concentrations. Calcium levels have been measured using the calcium sensitive dye fura-2, whose fluorescence spectrum changes upon formation of the [fura-2-Ca2+] complex. Our LTP-inducing protocol comprised of two glutamate stimuli of identical size and duration (50 mM, 30 s) which were separated by 35 min. We could demonstrate that such a stimulation pattern gives rise to approx. 25% larger calcium influx at the second stimulus. It has been shown than such a stimulation pattern gives rise to an average of 25% augmentation (potentiation) of the second response, with 69% of potentiated cells. This experimental paradigm shows the pharmacological properties of LTP, established by previous electrophysiological studies:- blocking of NMDARs and mGluRs eliminates LTP induction;- blocking of AMPARs and L-type VGCCs does not eliminate LTP induction. Having obtained a system for induction and following of LTP-like changes, a preliminary application example was performed. Its purpose was to investigate possible influence of nicotine and galanthamine on our potentiation effect. Nicotine (100 mM) was shown both to increase and to eliminate glutamate-induced potentiation. Galanthamine coapplication (0.5 mM) with nicotine and glutamate exerted no effect on nicotinic modulation. However, galanthamine coapplied with glutamate alone seems to augment glutamate-induced potentiation. An LTP model system presented here could be additionally refined, by variation of glutamate application times, and testing for dependence on various forms of protein kinases. Galanthamine effect would probably be better addressed by cell-to-cell measurements instead of statistical approach, with subsequent identification of the cell type. Alternatively, combined calcium imaging â electrophysiological experiments could be performed. Spatial and temporal properties of intracellular ion dynamics could be utilised as diagnostic tools of the physiological state of the cells, thereby finding its application in functional proteomics.