962 resultados para Recycled aggregates of concrete
Resumo:
A number of concrete admixtures are presently used in various concretes principally for water reduction, retardation, or air entrainment. Whereas the use of these admixtures in concrete placement is well documented, there is limited information showing their effects on durability and drying shrinkage. Since the durability and the shrinkage of concrete can have a pronounce effect on a structures longevity, wear characteristics, and reaction to loading, it is desirable to know the relative effects of different admixtures prior to concrete placement. The purpose of this study is to provide information which could be used to establish durability and shrinkage criterion for evaluating the admixtures currently in use and those whose use may be proposed.
Resumo:
Research is described that was aimed at developing a test method which can be reasonably and rapidly performed in the laboratory and in the field to predict, with a high degree of certainty, the behavior of concrete subjected to the action of alternate freezing and thawing. The conductometric evaluation of concrete durability was explored with 3 different test methods: conductometric evaluation of the resistance of concrete to rapid freezing and thawing; conductomtric evaluation of the resistance of concrete to natural freezing and thawing, and conductometric evaluation of the pore size distribution of concrete and its correlation to concrete durability. The study showed that conductance could be used as a viable method for determining the durability of portland cement concrete. This would also allow the continuous monitoring of concrete durability without the removal twice per week from the freeze/thaw chamber. Recommendations for the continued development of these test methods are also included.
Resumo:
Many reports have been written concerning investigations of concrete sealants. The primary concern of most investigators is the protection of bridge decks from de-icing chemicals which cause surface scaling and, when allowed to permeate to reinforcing steel, result in deep spalling and general concrete deterioration. The problem of protecting abutments and pier tops from salt solutions entails a significantly different approach than the problem of protecting bridge decks. The epoxy resins become eligible as a protective material since one need not be concerned with slipperiness or its abrasive characteristics. Protection with linseed oil at regular intervals would prove bothersome because of the inaccessibility of pier tops after the deck is placed. The primary purpose of this investigation was to evaluate various commercial products in terms of their ability to prevent concrete scaling of bridge abutments and pier tops which are subject to salt water deterioration.
Resumo:
This report presents the results of research on the influence of trace compounds from rock salt deicers on portland cement mortar and concrete. An evaluation of the deicers in stock throughout the state showed that about ninety-five percent contained enough sulfate to cause accelerated deterioration of concrete. Of the impurities found in rock salts, sulfate compounds of calcium and magnesium were found to be equally deleterious. Magnesium chloride was found to be innocuous. Introduction of fly ash eliminated the damage to portland cement mortar caused by sulfates. When used with frost resistant Alden aggregate in fly ash concrete and exposed to a variety of deicer brine compositions, the concrete did not deteriorate after exposure. With the exception of a high calcium brine, the behavior of the frost-prone Garrison aggregate was independent of deicer treatment; the high calcium brine reduced frost damage with this aggregate. Two approaches to reducing sulfate deterioration from deicers are suggested as (1) limiting the amount of sulfate to about 0.28 percent, and (2) making concrete sulfate-resistant by using fly ash. Techniques for making existing concrete deicer-sulfate-resistant are essential to a practical solution.
Resumo:
A water reducing and retarding type admixture in concrete is commonly used on continuous bridge deck pours in Iowa. The concrete placed in the negative moment areas must remain plastic until all the dead load deflection due to the new deck's weight occurs. If the concrete does not remain plastic until the total deflection has occurred, structural cracks will develop in these areas. Retarding type admixtures will delay the setting time of concrete and prevent structural cracks if added in the proper amounts. In Section 2412.02 of the Standard Specifications, 1972, Iowa State Highway Commission, it states, "The admixture shall be used in amounts recommended by the manufacturer for conditions which prevail on the project and as approved by the engineer." The conditions which prevail on the project depend on temperature, humidity, wind conditions, etc. Each of these factors will affect the setting rate of the plastic concrete. The purpose of this project is to provide data that will be useful to field personnel concerning the retardation of concrete setting times, and how the of sets will vary with different addition rates and curing temperatures holding all other atmospheric variables constant.
Resumo:
This report presents results of research on ways to reduce the detrimental effects of sulfate-tainted rock salt deicers on portland cement concrete used for highway pavements. Repetitious experiments on the influence of fly ash on the mortar phase of concrete showed significant improvement in resistance to deicing brines is possible. Fifteen to twenty percent by weight of fly ash replacement for portland cement was found to provide optimum improvement. Fly ashes from five sources were evaluated and all were found to be equally beneficial. Preliminary results indicate the type of coarse aggregate also plays an important role in terms of concrete resistance to freeze-thaw in deicing brines. This was particularly true for a porous ferroan dolomite thought to be capable of reaction with the brine. In this case fly ash improved the concrete, but not enough for satisfactory performance. An intermediate response was with a porous limestone where undesirable results were observed without fly ash and adequate performance was realized when 15% fly ash was added. The best combination for making deicer-resistant concrete was found to be with a non-porous limestone. Performance in brines was found to be adequate without fly ash, but better when fly ash was included. Consideration was given to treating existing hardened concrete made with poor aggregate and no fly ash to extend pavement life in the presence of deicers, particularly at joints. Sodium silicate was found to improve freeze-thaw resistance of mortar and is a good candidate for field usage because of its low cost and ease of handling.
Resumo:
This research project investigated the use of image analysis to measure the air void parameters of concrete specimens produced under standard laboratory conditions. The results obtained from the image analysis technique were compared to results obtained from plastic air content tests, Danish air meter tests (also referred to as Air Void Analyzer tests), high-pressure air content tests on hardened concrete, and linear traverse tests (as per ASTM C-457). Hardened concrete specimens were sent to three different laboratories for the linear traverse tests. The samples that were circulated to the three labs consisted of specimens that needed different levels of surface preparation. The first set consisted of approximately 18 specimens that had been sectioned from a 4 in. by 4 in. by 18 in. (10 cm by 10 cm by 46 cm) beam using a saw equipped with a diamond blade. These specimens were subjected to the normal sample preparation techniques that were commonly employed by the three different labs (each lab practiced slightly different specimen preparation techniques). The second set of samples consisted of eight specimens that had been ground and polished at a single laboratory. The companion labs were only supposed to retouch the sample surfaces if they exhibited major flaws. In general, the study indicated that the image analysis test results for entrained air content exhibited good to strong correlation to the average values determined via the linear traverse technique. Specimens ground and polished in a single laboratory and then circulated to the other participating laboratories for the air content determinations exhibited the strongest correlation between the image analysis and linear traverse techniques (coefficient of determination, r-squared = 0.96, for n=8). Specimens ground and polished at each of the individual laboratories exhibited considerably more scatter (coefficient of determination, r-squared = 0.78, for n=16). The image analysis technique tended to produce low estimates of the specific surface of the voids when compared to the results from the linear traverse method. This caused the image analysis spacing factor calculations to produce larger values than those obtained from the linear traverse tests. The image analysis spacing factors were still successful at distinguishing between the frost-prone test specimens and the other (more durable) test specimens that were studied in this research project.
Resumo:
Iowa has been using low slump concrete for repair and surfacing of deteriorated bridge decks on a routine basis since the mid 1960'2. More than 150 bridges have been resurfaced by this method with good results. A study was initiated in 1973 to evaluate 15 bridges resurfaced with low slump concrete, and one bridge resurfaced with latex modified concrete. The evaluation includes an assessment of concrete physical properties, chloride penetration rates, concrete consolidation, and riding qualities of the finished bridge deck. Results indicate that the overall properties of these two types of concrete are quite similar and have resulted in a contractor option concerning which system shall be used on bridge deck repair/resurfacing projects.
Resumo:
The penetration of chloride ions from deicing salts into the portland cement concrete of bridge decks can cause corrosion and serious damage to the reinforcing steel. Concrete properties which prevent chloride penetration into the bridge deck and provide a good structural and economic wearing surface are desirable. A variety of mix designs have been tried in the past in search of improved performance and lower costs for bridge deck overlay concrete. A group of mixes with various designs have been tested in this project and results are being compared to determine which concrete mix appears to be the most cost effective and resistant to chloride penetration for bridge deck overlay use.
Resumo:
This report summarizes the findings of a research which was intended to evaluate the concrete strength and opening time for the full depth patching projects in Iowa under cold weather and whether or not cold water could be allowed in the mix. This research was performed both in the laboratory and in the field. The results indicated that with the present specification the concrete strength after five hours for two-lane patches which requires hot water and calcium chloride is about 1,600 psi. Hence, if a higher strength is desired, a longer curing time is required. Hot water will have to be used and water reducer is not recommended for two-lane patches. On the other hand, the concrete strength for multi-lane patches with either hot or cold water approaches 4,000 psi in less than 24 hours. There was only a slight difference in compressive strengths between the 24-hour and 36-hours curing times.
Resumo:
Chloride-ions penetrating into bridge decks and corroding the steel have been a major problem. As the steel corrodes it exerts stresses on the surrounding concrete. When the stresses exceed the strength of the concrete, cracks or delaminations occur. This, of course, causes deterioration and spalling of bridge deck surfaces. Both the Latex and Iowa Method were used to repair bridge decks for this project. The concrete was removed down to the steel and replaced with approximately 1 1/2 inches of low slump or latex modified concrete. The removal of unsound concrete below the top layer of steel was sometimes necessary. The objective of this project was to determine if the bridge overlays would provide a cost effective method of rehabilitation. To do this, unsound and delaminated concrete was removed and replaced by an overlay of low slump or latex modified concrete.
Resumo:
The Iowa Department of Transportation has overlaid 446 bridge decks with low slump dense concrete from 1964 through October 1978. The overall performance of these decks has been satisfactory. Nineteen bridges that were resurfaced with either low slump dense concrete (LSDC) or latex-modified concrete were analyzed for chloride content, electrical corrosion potential, delaminations or debonding, and deck surface condition. The resurfacing ages of these bridges range from 5 to 13 years. None of the bridges showed any evidence of surface distress and the chloride penetration into the resurfacing concrete is relatively low. There are delaminations in the original decks below the resurfacing on the majority of bridges examined. The delaminations are concluded to be caused by either (A) reinforcing steel corrosion, (B) not removing all delaminated concrete prior to placing the resurfacing concrete, or (C) creating an incipient fracture in the top surf ace of the original deck through the use of scarification equipment. The active corrosion of the reinforcing steel is predominately in the gutter line on the majority of bridges evaluated. Recommendations for future deck repairs include removal of concrete to the top layer of reinforcing steel in areas where an electrical corrosion potential of -0.35V or more is detected, providing more positive methods of locating delaminated concrete, and treating the curb and gutter line to reduce the potential damage from salt water.
Resumo:
Due to the low workability of slipform concrete mixtures, the science of rheology is not strictly applicable for such concrete. However, the concept of rheological behavior may still be considered useful. A novel workability test method (Vibrating Kelly Ball or VKelly test) that would quantitatively assess the responsiveness of a dry concrete mixture to vibration, as is desired of a mixture suitable for slipform paving, was developed and evaluated. The objectives of this test method are for it to be cost-effective, portable, and repeatable while reporting the suitability of a mixture for use in slipform paving. The work to evaluate and refine the test was conducted in three phases: 1. Assess whether the VKelly test can signal variations in laboratory mixtures with a range of materials and proportions 2. Run the VKelly test in the field at a number of construction sites 3. Validate the VKelly test results using the Box Test developed at Oklahoma State University for slipform paving concrete The data collected to date indicate that the VKelly test appears to be suitable for assessing a mixture’s response to vibration (workability) with a low multiple operator variability. A unique parameter, VKelly Index, is introduced and defined that seems to indicate that a mixture is suitable for slipform paving when it falls in the range of 0.8 to 1.2 in./√s.
Resumo:
Concrete durability may be considered as the ability to maintain serviceability over the design life without significant deterioration, and is generally a direct function of the mixture permeability. Therefore, reducing permeability will improve the potential durability of a given mixture and, in turn, improve the serviceability and longevity of the structure. Given the importance of this property, engineers often look for methods that can decrease permeability. One approach is to add chemical compounds known as integral waterproofing admixtures or permeability-reducing admixtures, which help fill and block capillary pores in the paste. Currently, there are no standard approaches to evaluate the effectiveness of permeability-reducing admixtures or to compare different products in the US. A review of manufacturers’ data sheets shows that a wide range of test methods have been used, and rarely are the same tests used on more than one product. This study investigated the fresh and hardened properties of mixtures containing commercially available hydrophilic and hydrophobic types of permeability-reducing admixtures. The aim was to develop a standard test protocol that would help owners, engineers, and specifiers compare different products and to evaluate their effects on concrete mixtures that may be exposed to hydrostatic or non-hydrostatic pressure. In this experimental program, 11 concrete mixtures were prepared with a fixed water-to-cement ratio and cement content. One plain mixture was prepared as a reference, 5 mixtures were prepared using the recommended dosage of the different permeability-reducing admixtures, and 5 mixtures were prepared using double the recommended dosage. Slump, air content, setting time, compressive and flexural strength, shrinkage, and durability indicating tests including electrical resistivity, rapid chloride penetration, air permeability, permeable voids, and sorptivity tests were conducted at various ages. The data are presented and recommendations for a testing protocol are provided.
Resumo:
Iowa has approximately 1000 bridges that have been overlaid with a nominal 2" of portland cement concrete. A Delamtect survey of a sampling of the older overlaid bridges indicated delaminations in several of them. Eventually these bridges as well as those that have not received an overlay must be programmed for rehabilitation. Prior to rehabilitation the areas which are delaminated must be identified. There are currently two standard methods of determining delaminated areas in bridge decks; sounding with a metal object or a chain drag and sounding with an electro-mechanical sounding system (Delamtect). Sounding with a metal object or chain drag is time consuming and the accuracy is dependent on the ear of the operator and may be affected by traffic noise. The Delamtect requires less field time but the graphical traces require that data reduction be done in the office. A recently developed method of detecting delamination is infrared thermography. This method is based on the temperature difference between sound and delaminated concrete. A contract was negotiated with Donohue and Associates, Inc. of Sheboygan, Wisconsin, to survey 18 p.c. concrete overlaid bridge decks in Iowa using the infrared thermography method of detecting delaminations.