905 resultados para Receptor Substrate-1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin dysregulation is common in horses although the mechanisms of metabolic dysfunction are poorly understood. We hypothesized that insulin signaling in striated (cardiac and skeletal) muscle and lamellae may be mediated through different receptors as a result of receptor content, and that transcriptional regulation of downstream signal transduction and glucose transport may also differ between tissues sites during hyperinsulinemia. Archived samples from horses treated with a prolonged insulin infusion or a balanced electrolyte solution were used. All treated horses developed marked hyperinsulinemia and clinical laminitis. Protein expression was compared across tissues for the insulin receptor and insulin-like growth factor 1 receptor (IGF-1R) by immunoblotting. Gene expression of metabolic insulin-signaling markers (insulin receptor substrate 1, Akt2, and glycogen synthase kinase 3 beta [GSK-3β]) and glucose transport (basal glucose transporter 1 and insulin-sensitive glucose transporter 4) was evaluated using real-time reverse transcription polymerase chain reaction. Lamellar tissue contained significantly more IGF-1R protein than skeletal muscle, indicating the potential significance of IGF-1R signaling for this tissue. Gene expression of the selected markers of insulin signaling and glucose transport in skeletal muscle and lamellar tissues was unaffected by prolonged hyperinsulinemia. In contrast, the significant upregulation of Akt2, GSK-3β, GLUT1, and GLUT4 gene expression in cardiac tissue suggested that the prolonged hyperinsulinemia induced an increase in insulin sensitivity and a transcriptional activation of glucose transport. Responses to insulin are tissue-specific, and extrapolation of data across tissue sites is inappropriate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A doença hepática gordurosa não alcoólica é uma desordem multifatorial causada principalmente por excesso nutricional e resistência à insulina, com prevalência estimada de 20-40% nos países ocidentais. A dieta hiperlipídica e/ou rica em sacarose pode influenciar no desenvolvimento da esteatose hepática associada à obesidade e a resistência à insulina. O fígado, por assumir papel central no controle metabólico, é um órgão alvo nos casos de excesso alimentar, ocasionando, principalmente, acúmulo de gotículas de gordura nos hepatócitos. Este trabalho teve como objetivo avaliar o início das alterações morfológicas e metabólicas no fígado e no tecido adiposo de camundongos suíços machos alimentados com dieta hiperlipídica e/ou rica em sacarose. Camundongos suíços machos aos três meses de idade foram divididos em quatro grupos nutricionais: dieta padrão (SC), dieta hiperlipídica (HF), dieta rica em sacarose (HSu) e dieta hiperlipídica rica em sacarose (HFHSu). Os animais receberam as respectivas dietas durante quatro semanas. A massa corporal, a ingestão alimentar e a tolerância oral à glicose foram avaliados. Ao sacrifício, o fígado e os depósitos de gordura corporal foram removidos e processados para análises histomorfométricas e moleculares. As amostras de sangue foram obtidas para análises bioquímicas plasmáticas. Os dados foram expressos como média e erro padrão da média e as diferenças foram testadas por one-way ANOVA com pós-teste de Holm-Sidak, e foi considerado o nível de significância de p<0,05. Os grupos HF e HFHSu apresentaram-se mais pesados quando comparados aos grupos SC e HSu. Os animais dos grupos HF, HSu e HFHSu apresentaram intolerância à glicose, esteatose hepática e aumento de triglicerídeos hepáticos quando comparados ao grupo SC (p<0,0005). Adicionalmente, houve elevação na expressão hepática das proteínas transportador de glicose 2 (GLUT-2), proteína de ligação ao elemento regulador do esterol 1-c (SREBP1-c), fosfoenolpiruvato carboxiquinase (PEPCK), glicose -6- fosfatase (G6PASE), substrato do receptor da insulinaI-1 (IRS-1) e proteína quinase B (AKt/ou PKB) e redução da expressão no fígado do receptor ativador de proliferação peroxissomal (PPAR-α) nos grupos experimentais em comparação com o grupo SC (p<0,0005). A administração de dieta hiperlipídica e/ou rica em sacarose promoveu intolerância à glicose e danos hepáticos (hepatomegalia, esteatose, redução da beta-oxidação, aumento na lipogênese e na produção de glicose) em camundongos machos adultos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A obesidade, doença resultante do acúmulo excessivo de gordura corporal, é importante fator de risco para diabetes mellitus tipo 2, dislipidemias e doenças cardiovasculares, doenças de alta prevalência em todo o mundo. O processo de transição nutricional decorrente da globalização contribuiu para o crescente número de indivíduos com obesidade, principalmente pela modificação nos hábitos alimentares da população, com ampla inclusão de produtos industrializados ricos em gordura saturada, sal e açúcar, denominada dieta ocidental. Os mecanismos pelos quais a obesidade induzida por dieta leva ao desenvolvimento de doenças cardiovasculares ainda não estão completamente esclarecidos na literatura, porém sabe-se que a obesidade leva ao comprometimento da função cardíaca e do metabolismo energético, aumentando a morbidade e mortalidade. Em grande parte dos estudos relacionados à obesidade, o metabolismo energético celular comprometido associa-se à disfunção mitocondrial. Neste contexto, torna-se importante avaliar a função mitocondrial na obesidade, visto que as mitocôndrias são organelas com funções-chave no metabolismo energético. No presente estudo, avaliamos inicialmente o efeito obesogênico da dieta ocidental em camundongos Swiss por 16 semanas a partir do desmame. Para tal, analisamos a ingestão alimentar, evolução da massa corporal, Índice de Lee, peso das gorduras epididimal e retroperitoneal, peso e morfologia do fígado, relação entre o peso do fígado/massa corporal, peso do ventrículo esquerdo (VE)/massa corporal, glicemia de jejum e teste intraperitoneal de tolerância à glicose. Avaliamos também o consumo de oxigênio das fibras cardíacas através da respirometria de alta resolução. Além disso, o conteúdo das proteínas envolvidas no metabolismo energético: Carnitina Palmitoil Transferase 1 (CPT1), proteína desacopladora 2 (UCP2), Transportadores de glicose 1 e 4 (GLUT1 e GLUT4), proteína quinase ativada por AMP (AMPK), proteína quinase ativada por AMP fosforilada (pAMPK), receptor de insulina β (IRβ) e substrato do receptor de insulina 1 (IRS-1) foi determinado por western blotting. Nossos resultados confirmaram o caráter obesogênico da dieta ocidental, visto que os camundongos submetidos a esta dieta (GO), apresentaram-se hiperfágicos (P<0,001) e obesos (72,031,82, P<0,001), com aumento progressivo no ganho de massa corporal. Além do aumento significativo dos parâmetros: Índice de Lee (362,902,44, P<0,001), gorduras epididimal e retroperitonial (3,310,15 e 1,610,11, P<0,001), relação entre o peso do fígado/massa corporal (0,060,003, P<0,001) e peso de ventrículo esquerdo (VE)/massa corporal (0,080,002, P<0,01), hiperglicemia de jejum (192,1014,75, P<0,01), intolerância à glicose (P<0,05, P<0,01) e deposição ectópica de gordura no fígado. A respirometria de alta resolução evidenciou disfunção mitocondrial cardíaca no grupo GO, com reduzida capacidade de oxidação de carboidratos e ácidos graxos (P<0,001) e aumento do desacoplamento entre a fosforilação oxidativa e a síntese de ATP (P<0,001). Os resultados de western blotting evidenciaram aumento nos conteúdos de CPT1 (1,160,08, P<0,05) e UCP2 (1,080,06, P<0,05) e redução no conteúdo de IRS-1 (0,600,08, P<0,05). Não houve diferença significativa nos conteúdos de GLUT1, GLUT4, AMPK, pAMPK, pAMPK/AMPK e IRβ. Em conclusão, o consumo da dieta ocidental resultou no desenvolvimento de obesidade com disfunção mitocondrial associada a alterações no metabolismo energético.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vários estudos sugerem que a desnutrição materna no período pós-natal poderia causar alterações na homeostase glicêmica da prole na vida adulta. Neste trabalho objetivamos investigar a interferência da programação metabólica induzida pela desnutrição protéica materna durante o início da lactação sobre a homeostase glicêmica e a sinalização da insulina nos tecidos muscular e adiposo. Animais desnutridos (D-dieta da mãe contendo 0% de proteína nos primeiros 10 dias de lactação) ou controle (C-dieta da mãe contendo 22% de proteína) foram estudados do nascimento até a vida adulta. Em resumo, observamos uma diminuição na insulina plasmática acompanhada de normoglicemia nos animais adultos desnutridos. A ativação do receptor de insulina (IR), após a estimulação com o hormônio apresentou-se diminuída durante o período de restrição protéica em músculo isolado destes animais experimentais. Durante o período da lactação, observamos uma diminuição na captação de glicose, na fosforilação do substrato para o receptor de insulina (IRS 1) e na translocação do GLUT 4 no tecido muscular. Na idade adulta, entretanto, houve aumento significativo na captação de glicose e translocação do GLUT 4 no músculo, associado com o aumento na expressão da PI3 quinase associada ao IRS 1. No tecido adiposo de ratos desnutridos adultos observamos menor fosforilação em tirosina tanto do IR quanto do IRS 1, que foi compensada pela maior ativação do IRS 2 e da PI3 quinase. Os níveis basais de pAkt e de GLUT 4 na membrana estavam aumentados, culminando em um aumento na captação de glicose. Observamos também uma redistribuição do citoesqueleto de actina e maior resistência aos efeitos da Ltrunculina B nos adipócitos dos ratos desnutridos. Em conclusão, este estudo demonstrou que a desnutrição materna no início da lactação é capaz de causar alterações na prole na vida adulta, o que parece estar relacionado com a expressão e ativação de proteínas chave na cascata da sinalização da insulina nos tecidos periféricos, importantes na regulação do metabolismo da glicose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abnormal maternal inflammation during pregnancy is linked to complications such as preeclampsia and fetal growth restriction. There is growing evidence that insulin resistance is also associated with a heightened inflammatory state, and is linked to pregnancy complications such as gestational diabetes. This study tested the hypothesis that abnormal inflammation during pregnancy is causally linked to elevations in blood glucose and insulin resistance. To induce a state of abnormal systemic inflammation, bacterial lipopolysaccharide (LPS) was administered to pregnant rats on gestational days (GD) 13.5-16.5. Dams treated with LPS exhibited an abnormal immune response characterized by an elevation in white blood cells, which was linked to reduced fetal weight and increased glucose levels over pregnancy. Abnormal inflammation is characterized by increased levels of circulating pro-inflammatory cytokines such as tumour necrosis factor alpha (TNF) and interleukin-6, which contribute to insulin resistance by inhibiting the insulin signalling pathway. TNF in particular induces a serine phosphorylation (pSer307) of insulin receptor substrate 1 (IRS-1). In our model, insulin resistance was assessed by measuring the extent of pSer307 of IRS-1 and total IRS-1 expression in skeletal muscle, as well as changes in metabolic parameters and pancreas tissue morphology associated with insulin resistance. LPS-treated dams exhibited a significant reduction in IRS-1 expression, elevation in fasting glucose levels, and reduction in insulin sensitivity indices. There were also biologically relevant increases in fasting plasma insulin levels and insulin resistance indices, but not pSer307 of IRS-1 and pancreatic islet size. To determine whether inflammation plays a role in reducing insulin signalling and the other changes associated with LPS administration, etanercept, a TNF antagonist, was administered on GDs 13.5 and 15.5 prior to LPS injections. With the exception of IRS-1 expression, in rats treated with etanercept all of the measured parameters remained at the levels observed in saline controls, indicating a link between abnormal inflammation and insulin resistance. The results of this study support the practice of monitoring the inflammatory conditions of the mother prior to and during pregnancy, and support further investigation into the potential use of anti-inflammatory agents during pregnancy in women at risk of insulin resistance and gestational diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obese AT (adipose tissue) exhibits increased macrophage number. Pro-inflammatory CD16+ peripheral monocyte numbers are also reported to increase with obesity. The present study was undertaken to simultaneously investigate obesity-associated changes in CD16+ monocytes and ATMs (AT macrophages). In addition, a pilot randomized placebo controlled trial using the PPAR (peroxisome-proliferator-activated receptor) agonists, pioglitazone and fenofibrate was performed to determine their effects on CD14+/CD16+ monocytes, ATM and cardiometabolic and adipose dysfunction indices. Obese glucose-tolerant men (n=28) were randomized to placebo, pioglitazone (30 mg/day) and fenofibrate (160 mg/day) for 12 weeks. A blood sample was taken to assess levels of serum inflammatory markers and circulating CD14+/CD16+ monocyte levels via flow cytometry. A subcutaneous AT biopsy was performed to determine adipocyte cell surface and ATM number, the latter was determined via assessment of CD68 expression by IHC (immunohistochemistry) and real-time PCR. Subcutaneous AT mRNA expression of CEBPß (CCAAT enhancer-binding protein ß), SREBP1c (sterol-regulatory-element-binding protein 1c), PPAR?2, IRS-1 (insulin receptor substrate-1), GLUT4 (glucose transporter type 4) and TNFa (tumour necrosis factor a) were also assessed. Comparisons were made between obese and lean controls (n=16) at baseline, and pre- and post-PPAR agonist treatment. Obese individuals had significantly increased adipocyte cell surface, percentage CD14+/CD16+ monocyte numbers and ATM number (all P=0.0001). Additionally, serum TNF-a levels were significantly elevated (P=0.017) and adiponectin levels reduced (total: P=0.0001; high: P=0.022) with obesity. ATM number and percentage of CD14+/CD16+ monocytes correlated significantly (P=0.05). Pioglitazone improved adiponectin levels significantly (P=0.0001), and resulted in the further significant enlargement of adipocytes (P=0.05), without effect on the percentage CD14+/CD16+ or ATM number. Pioglitazone treatment also significantly increased subcutaneous AT expression of CEBPß mRNA. The finding that improvements in obesity-associated insulin resistance following pioglitazone were associated with increased adipocyte cell surface and systemic adiponectin levels, supports the centrality of AT to the cardiometabolic derangement underlying the development of T2D (Type 2 diabetes) and CVD (cardiovascular disease).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin is the hormone that plays an essential role in metabolism and mitosis of normal and tumor cells, exerting its pleiotropic effects through binding to specific membrane receptors and promoting the phosphorylation of tyrosine residues of the receptor itself and of other components of the signaling pathway. The aim of this study was to investigate the effects of insulin on melanogenesis and cell growth in three different cell lines: the goldfish GEM-81 erythrophoroma cells (undifferentiated and differentiated with 1.5% dimethylsulfoxide-DMSO), and the murine B16F10 and Cloudman S91 melanoma cells. Undifferentiated GEM-81 and B16F10 cells responded to insulin with a small increase of cell proliferation, whereas S91 cells responded with a decrease of growth. In the two mammalian cell lines, and in DMSO-differentiated GEM-81 cells, the hormone strongly inhibited melanogenesis, by decreasing tyrosinase activity. In undifferentiated GEM-81 cells, insulin had no effect on tyrosinase activity. An increase in the tyrosine phosphorylation status of pp 185 (insulin receptor substrate 1 and 2-IRS-1/2) phosphorylation degree was observed in S91 mouse melanoma and in differentiated GEM-81 erythrophoroma cells, suggesting that this specific protein was maintained during transformation process and participates in insulin signaling. Our results imply an ancient and diverse history of the insulin signaling system in vertebrate pigment cells. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have shown that rats chronically treated with Arginine (Arg), although normoglycemic, exhibit hyperinsulinemia and decreased blood glucose disappearance rate after an insulin challenge. Attempting to investigate the processes underlying these alterations, male Wistar rats were treated with Arg (35 mg/d), in drinking water, for 4 wk. Rats were then acutely stimulated with insulin, and the soleus and extensorum digitalis longus muscles, white adipose tissue (WAT), and liver were excised for total and/or phosphorylated insulin receptor (IR), IR substrate 1/2, Akt, Janus kinase 2, signal transducer and activator of transcription (STAT) 1/3/5, and p85 alpha/55 alpha determination. Muscles and WAT were also used for plasma membrane (PM) and microsome evaluation of glucose transporter (GLUT) 4 content. Pituitary GH mRNA, GH, and liver IGF-I mRNA expression were estimated. It was shown that Arg treatment: 1) did not affect phosphotyrosine-IR, whereas it decreased phosphotyrosine-IR substrate 1/2 and phosphoserine-Akt content in all tissues studied, indicating that insulin signaling is impaired at post-receptor level; 2) decreased PM GLUT4 content in both muscles and WAT; 3) increased the pituitary GH mRNA, GH, and liver IGF-I mRNA expression, the levels of phosphotyrosine-STAT5 in both muscles, phosphotyrosine-Janus kinase 2 in extensorum digitalis longus, phosphotyrosine-STAT3 in liver, and WAT as well as total p85 alpha in soleus, indicating that GH signaling is enhanced in these tissues; and 4) increased p55 alpha total content in muscles, WAT, and liver. The present findings provide the molecular mechanisms by which insulin resistance and, by extension, reduced GLUT4 content in PM of muscles and WAT take place after chronic administration of Arg, and further suggest a putative role for GH in its genesis, considering its diabetogenic effect. (Endocrinology 150: 2080-2086, 2009)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: In the present study, a novel pathway by which palmilate potentiates glucose-induced insulin secretion by pancreatic beta cells was investigated. Methods: Groups of freshly isolated islets were incubated in 10 mM glucose with palmitate, LY294002, wortmannin, and fumonism B I for measurement of insulin secretion by radioimmunoassay (RIA). Also, phosphorylation and content of AKT and PKC proteins were evaluated by immunoblotting. Results: Glucose plus palmitate and glucose plus LY294002 or wortmannin (PI3K inhibitors) increased glucose-induced insulin secretion by isolated pancreatic islets. Glucose at 10 mM induced AKT and PKC zeta/lambda phosphorylation. Palmitate (0.1 mM) abolished glucose stimulation of AKT and PKC zeta/lambda phosphorylation possibly through PI3K inhibition because both LY294002 (50 mu M) and wortmannin (100 nM) caused the same effect. The inhibitory effect of palmitate on glucose-induced AKT and PKC zeta/lambda phosphorylation and the stimulatory effect of palmitate on glucose-induced insulin secretion were not observed in the presence of fumonisin B1, all inhibitor of ceramide synthesis. Conclusions: These findings support the proposition that palmilate increases insulin release in the presence of 10 mM glucose by inhibiting PI3K activity through a mechanism that involves ceramide synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A regimen of low-protein diet induces a reduction of pancreatic islet function that is associated with development of metabolic disorders including diabetes and obesity afterward. In the present study, the influence of leucine supplementation on metabolic parameters, insulin secretion to glucose and to amino acids, as well as the levels of proteins that participate in the phosphatidylinositol 3-phosphate kinase (PI3K) pathway was investigated in malnourished rats. Four groups were fed with different diets for 12 weeks: a normal protein diet (17%) without (NP) or with leucine supplementation (NPL) or a low (6%)-protein diet without (LP) or with leucine supplementation (LPL). Leucine was given in the drinking water during the last 4 weeks. As indicated by the intraperitoneal glucose tolerance test, LPL rats exhibited increased glucose tolerance as compared with NPL group. Both NPL and LPL rats had higher circulating insulin levels than controls. The LPL rats also showed increased insulin secretion by pancreatic islets in response to glucose or arginine compared with those observed in islets from LP animals. Glucose oxidation was significantly reduced in NPL, LP, and LPL isolated islets as compared with NP; but no alteration was observed for leucine and glutamate oxidation among the 4 groups. Western blotting analysis demonstrated increased PI3K and mammalian target protein of rapamycin protein contents in LPL compared with LP islets. A significant increase in insulin-induced insulin receptor substrate I associated PI3K activation was also observed in LPL compared with LP islets. These findings indicate that leucine supplementation can augment islet function in malnourished rats and that activation of the PI3K/maminalian target protein of rapamycin pathway may play a role in this process. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maternal malnutrition was shown to affect early growth and leads to permanent alterations in insulin secretion and sensitivity of offspring. In addition, epidemiological studies showed an association between low birth weight and glucose intolerance in adult life. To understand these interactions better, we investigated the insulin secretion by isolated islets and the early events related to insulin action in the hind-limb muscle of adult rats fed a diet of 17% protein (control) or 6% protein [low (LP) protein] during fetal life, suckling and after weaning, and in rats receiving 6% protein during fetal life and suckling followed by a 17% protein diet after weaning (recovered). The basal and maximal insulin secretion by islets from rats fed LP diet and the basal release by islets from recovered rats were significantly lower than that of control rats. The dose-response curves to glucose of islets from LP and recovered groups were shifted to the right compared to control islets, with the half-maximal response (EC 50) occurring at 16.9 ± 1.3, 12.4 ± 0.5 and 8.4 ± 0.1 mmol/L, respectively. The levels of insulin receptor, as well as insulin receptor substrate-1 and phosphorylation and the association between insulin receptor substrate-1 and phosphatidylinositol 3-kinase were greater in rats fed a LP diet than in control rats. In recovered rats, these variables were not significantly different from those of the other two groups. These results suggest that glucose homeostasis is maintained in LP and recovered rats by an increased sensitivity to insulin as a result of alterations in the early steps of the insulin signal transduction pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Moderate amounts of alcohol intake have been reported to have a protective effect on the cardiovascular system and this may involve enhanced insulin sensitivity. We established an animal model of increased insulin sensitivity by low ethanol consumption and here we investigated metabolic parameters and molecular mechanisms potentially involved in this phenomenon. For that, Wistar rats have received drinking water either without (control) or with 3% ethanol for four weeks. The effect of ethanol intake on insulin sensitivity was analyzed by insulin resistance index (HOMA-IR), intravenous insulin tolerance test (IVITT) and lipid profile. The role of liver was investigated by the analysis of insulin signaling pathway, GLUT2 gene expression and tissue glycogen content. Rats consuming 3% ethanol showed lower values of HOMA-IR and plasma free fatty acids (FFA) levels and higher hepatic glycogen content and glucose disappearance constant during the IVITT. Neither the phosphorylation of insulin receptor (IR) and insulin receptor substrate-1 (IRS-1), nor its association with phosphatidylinositol-3-kinase (PI3-kinase), was affected by ethanol. However, ethanol consumption enhanced liver IRS-2 and protein kinase B (Akt) phosphorylation (3 times, P < 0.05), which can be involved in the 2-fold increased (P < 0.05) hepatic glycogen content. The GLUT2 protein content was unchanged. Our findings point out that liver plays a role in enhanced insulin sensitivity induced by low ethanol consumption. © 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is now commonly accepted that chronic inflammation associated with obesity during aging induces insulin resistance in the liver. In the present study, we investigated whether the improvement in insulin sensitivity and insulin signaling, mediated by acute exercise, could be associated with modulation of protein-tyrosine phosphatase 1B (PTP-1B) in the liver of old rats. Aging rats were subjected to swimming for two 1.5-h long bouts, separated by a 45 min rest period. Sixteen hours after the exercise, the rats were sacrificed and proteins from the insulin signaling pathway were analyzed by immunoblotting. Our results show that the fat mass was increased in old rats. The reduction in glucose disappearance rate (Kitt) observed in aged rats was restored 16 h after exercise. Aging increased the content of PTP-1B and attenuated insulin signaling in the liver of rats, a phenomenon that was reversed by exercise. Aging rats also increased the IRβ/PTP-1B and IRS-1/PTP-1B association in the liver when compared with young rats. Conversely, in the liver of exercised old rats, IRβ/PTP-1B and IRS-1/PTP-1B association was markedly decreased. Moreover, in the hepatic tissue of old rats, the insulin signalling was decreased and PEPCK and G6Pase levels were increased when compared with young rats. Interestingly, 16 h after acute exercise, the PEPCK and G6Pase protein level were decreased in the old exercised group. These results provide new insights into the mechanisms by which exercise restores insulin signalling in liver during aging. © 2013 Moura et al; licensee BioMed Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)