938 resultados para Real-time Pcr Assay
Resumo:
HHV-6 is the etiological agent of Exanthem subitum which is considered the sixth most frequent disease in infancy. In immuno-compromised hosts, reactivation of latent HHV-6 infection may cause severe acute disease. We developed a Sybr Green Real Time PCR for HHV-6 and compared the results with nested conventional PCR. A 214 pb PCR derived fragment was cloned using pGEM-T easy from Promega system. Subsequently, serial dilutions were made in a pool of negative leucocytes from 10-6 ng/µL (equivalent to 2465.8 molecules/µL) to 10-9 (equivalent to 2.46 molecules/µL). Dilutions of the plasmid were amplified by Sybr Green Real Time PCR, using primers HHV3 (5' TTG TGC GGG TCC GTT CCC ATC ATA 3)'and HHV4 (5' TCG GGA TAG AAA AAC CTA ATC CCT 3') and by conventional nested PCR using primers HHV1 (outer): 5'CAA TGC TTT TCT AGC CGC CTC TTC 3'; HHV2 (outer): 5' ACA TCT ATA ATT TTA GAC GAT CCC 3'; HHV3 (inner) and HHV4 (inner) 3'. The detection threshold was determined by plasmid serial dilutions. Threshold for Sybr Green real time PCR was 24.6 molecules/µL and for the nested PCR was 2.46 molecules/µL. We chose the Real Time PCR for diagnosing and quantifying HHV-6 DNA from samples using the new Sybr Green chemistry due to its sensitivity and lower risk of contamination.
Resumo:
Objective: To assess quantitative real-time polymerase chain reaction (q-PCR) for the sputum smear diagnosis of pulmonary tuberculosis (PTB) in patients living with HIV/AIDS with a clinical suspicion of PTB.Method: This is a prospective study to assess the accuracy of a diagnostic test, conducted on 140 sputum specimens from 140 patients living with HIV/AIDS with a clinical suspicion of PTB, attended at two referral hospitals for people living with HIV/AIDS in the city of Recife, Pernambuco, Brazil. A Löwenstein-Jensen medium culture and 7H9 broth were used as gold standard.Results: Of the 140 sputum samples, 47 (33.6%) were positive with the gold standard. q-PCR was positive in 42 (30%) of the 140 patients. Only one (0.71%) did not correspond to the culture. The sensitivity, specificity and accuracy of the q-PCR were 87.2%, 98.9% and 95% respectively. In 39 (93%) of the 42 q-PCR positive cases, the CT (threshold cycle) was equal to or less than 37.Conclusion: q-PCR performed on sputum smears from patients living with HIV/AIDS demonstrated satisfactory sensitivity, specificity and accuracy, and may therefore be recommended as a method for diagnosing PTB.
Resumo:
INTRODUCTION: Laboratory-based surveillance is an important component in the control of vancomycin resistant enterococci (VRE). METHODS: The study aimed to evaluate real-time polymerase chain reaction (RT-PCR) (genes vanA-vanB) for VRE detection on 115 swabs from patients included in a surveillance program. RESULTS: Sensitivity of RT-PCR was similar to primary culture (75% and 79.5%, respectively) when compared to broth enriched culture, whereas specificity was 83.1%. CONCLUSIONS: RT-PCR provides same day results, however it showed low sensitivity for VRE detection.
Resumo:
Real-time PCR was used to quantify phytoplasma concentration in fifty inoculated trees from five Prunus rootstocks and in forty-eight symptomatic pear and Japanese plum trees from orchards. Seasonal fluctuation of Ca. P. prunorum in different Prunus rootstocks, over three years, showed that the highest percentage detected by nested-PCR was in the ‘Garnem’ rootstock on nearly all sampling dates. Intra-varietal differences were also observed. Phytoplasma titer could be estimated by real time PCR in some trees of the rootstocks ‘Garnem’, ‘Barrier’, ‘GF-677’ and ‘Marianna’, and ranged from 4.7x105 to 3.18x109 phytoplasmas per gram of tissue. Quantification by real-time PCR was not possible in the ‘Cadaman’ trees analyzed, probably due to a lower phytoplasma titer in this variety. Samples from infected trees from commercial plots had different phytoplasma concentration and detection percentage depending on the variety, both being lower in ‘Fortune’ and ‘606’ Japanese plum and in ‘Blanquilla’ pear trees.
Resumo:
Malaria is generally diagnosed by microscopy and rapid antigen testing. Molecular methods become more widely used. In the present study, the contribution of a quantitative multiplex malaria PCR was investigated. We assessed: (i) the agreement between PCR-based identification and microscopy and (ii) the correlation between the parasite load as determined by quantitative PCR and by microscopy. For 83 patients positive by microscopy for Plasmodium spp., the first EDTA-blood sample was tested by multiplex PCR to confirm smear-based species identification. Parasite load was assessed daily using both microscopy and PCR. Among the 83 patients tested, one was positive by microscopy only and 82 were positive by microscopy and PCR. Agreement between microscopy and PCR for the identification at the species level was 89% (73/82). Six of the nine discordant results corresponded to co-infections by two or three species and were attributed to inaccurate morphological identification of mixed cases. The parasite load generally decreased rapidly after treatment had been started, with similar decay curves being obtained using both microscopy and PCR. Our PCR proved especially useful for identifying mixed infections. The quantification obtained by PCR closely correlated with microscopy-based quantification and could be useful for monitoring treatment efficacy, at least in clinical trials.
Resumo:
This study aimed to quantify Toxoplasma gondii in tissue samples of serologically positive chickens using real-time polymerase chain reaction (PCR). Of 65 chickens evaluated, 28 were positive for T. gondii antibodies. Brain and heart samples were collected from 26 seropositive chickens and DNA was extracted using Trizol® and amplified using real-time PCR with SYBR® Green. Parasite DNA was detected in 24 of the 26 samples analyzed; the number of positive tissue samples and the parasite quantity did not differ between tissue types. The results confirmed the analytical sensitivity of parasite detection in chicken tissue samples and demonstrated the possibility of using other molecular systems for genotypic analysis.
Resumo:
The introduction of newer molecular methods has led to the discovery of new respiratory viruses, such as human metapneumovirus (hMPV) and human bocavirus (hBoV), in respiratory tract specimens. We have studied the occurrence of hMPV and hBoV in the Porto Alegre (PA) metropolitan area, one of the southernmost cities of Brazil, evaluating children with suspected lower respiratory tract infection from May 2007-June 2008. A real-time polymerase chain reaction method was used for amplification and detection of hMPV and hBoV and to evaluate coinfections with respiratory syncytial virus (RSV), influenza A and B, parainfluenza 1, 2 and 3, human rhinovirus and human adenovirus. Of the 455 nasopharyngeal aspirates tested, hMPV was detected in 14.5% of samples and hBoV in 13.2%. A unique causative viral agent was identified in 46.2% samples and the coinfection rate was 43.7%. For hBoV, 98.3% of all positive samples were from patients with mixed infections. Similarly, 84.8% of all hMPV-positive results were also observed in mixed infections. Both hBoV and hMPV usually appeared with RSV. In summary, this is the first confirmation that hMPV and hBoV circulate in PA; this provides evidence of frequent involvement of both viruses in children with clinical signs of acute viral respiratory tract infection, although they mainly appeared as coinfection agents.
Resumo:
Malaria diagnoses has traditionally been made using thick blood smears, but more sensitive and faster techniques are required to process large numbers of samples in clinical and epidemiological studies and in blood donor screening. Here, we evaluated molecular and serological tools to build a screening platform for pooled samples aimed at reducing both the time and the cost of these diagnoses. Positive and negative samples were analysed in individual and pooled experiments using real-time polymerase chain reaction (PCR), nested PCR and an immunochromatographic test. For the individual tests, 46/49 samples were positive by real-time PCR, 46/49 were positive by nested PCR and 32/46 were positive by immunochromatographic test. For the assays performed using pooled samples, 13/15 samples were positive by real-time PCR and nested PCR and 11/15 were positive by immunochromatographic test. These molecular methods demonstrated sensitivity and specificity for both the individual and pooled samples. Due to the advantages of the real-time PCR, such as the fast processing and the closed system, this method should be indicated as the first choice for use in large-scale diagnosis and the nested PCR should be used for species differentiation. However, additional field isolates should be tested to confirm the results achieved using cultured parasites and the serological test should only be adopted as a complementary method for malaria diagnosis.
Resumo:
RÉSUMÉ Le but d'un traitement antimicrobien est d'éradiquer une infection bactérienne. Cependant, il est souvent difficile d'en évaluer rapidement l'efficacité en utilisant les techniques standard. L'estimation de la viabilité bactérienne par marqueurs moléculaires permettrait d'accélérer le processus. Ce travail étudie donc la possibilité d'utiliser le RNA ribosomal (rRNA) à cet effet. Des cultures de Streptococcus gordonii sensibles (parent Wt) et tolérants (mutant Tol 1) à l'action bactéricide de la pénicilline ont été exposées à différents antibiotiques. La survie bactérienne au cours du temps a été déterminée en comparant deux méthodes. La méthode de référence par compte viable a été comparée à une méthode moléculaire consistant à amplifier par PCR quantitative en temps réel une partie du génome bactérien. La cible choisie devait refléter la viabilité cellulaire et par conséquent être synthétisée de manière constitutive lors de la vie de la bactérie et être détruite rapidement lors de la mort cellulaire. Le choix s'est porté sur un fragment du gène 16S-rRNA. Ce travail a permis de valider ce choix en corrélant ce marqueur moléculaire à la viabilité bactérienne au cours d'un traitement antibiotique bactéricide. De manière attendue, les S. gordonii sensibles à la pénicilline ont perdu ≥ 4 log10 CFU/ml après 48 heures de traitement par pénicilline alors que le mutant tolérant Tol1 en a perdu ≥ 1 log10 CFU/ml. De manière intéressant, la quantité de marqueur a augmenté proportionnellement au compte viable durant la phase de croissance bactérienne. Après administration du traitement antibiotique, l'évolution du marqueur dépendait de la capacité de la bactérie à survivre à l'action de l'antibiotique. Stable lors du traitement des souches tolérantes, la quantité de marqueur détectée diminuait de manière proportionnelle au compte viable lors du traitement des souches sensibles. Cette corrélation s'est confirmée lors de l'utilisation d'autres antibiotiques bactéricides. En conclusion, l'amplification par PCR du RNA ribosomal 16S permet d'évaluer rapidement la viabilité bactérienne au cours d'un traitement antibiotique en évitant le recours à la mise en culture dont les résultats ne sont obtenus qu'après plus de 24 heures. Cette méthode offre donc au clinicien une évaluation rapide de l'efficacité du traitement, particulièrement dans les situations, comme le choc septique, où l'initiation sans délai d'un traitement efficace est une des conditions essentielles du succès thérapeutique. ABSTRACT Assessing bacterial viability by molecular markers might help accelerate the measurement of antibiotic-induced killing. This study investigated whether ribosomal RNA (rRNA) could be suitable for this purpose. Cultures of penicillin-susceptible and penicillin-tolerant (Tol1 mutant) Streptococcus gordonii were exposed to mechanistically different penicillin and levofloxacin. Bacterial survival was assessed by viable counts, and compared to quantitative real-time PCR amplification of either the 16S-rRNA genes (rDNA) or the 16S rRNA, following reverse transcription. Penicillin-susceptible S. gordonii lost ≥ 4 log10 CFU/ml of viability over 48 h of penicillin treatment. In comparison, the Toll mutant lost ≤ 1 log10 CFU/ml. Amplification of a 427-base fragment of 16S rDNA yielded amplicons that increased proportionally to viable counts during bacterial growth, but did not decrease during drug-induced killing. In contrast, the same 427-base fragment amplified from 16S rDNA paralleled both bacterial growth and drug-induced killing. It also differentiated between penicillin-induced killing of the parent and the Toll mutant (≥4 log10 CFU/ml and ≤1 lo10 CFU/ml, respectively), and detected killing by mechanistically unrelated levofloxacin. Since large fragments of polynucleotides might be degraded faster than smaller fragments the experiments were repeated by amplifying a 119-base region internal to the origina1 427-base fragment. The amount of 119-base amplicons increased proportionally to viability during growth, but remained stable during drug treatment. Thus, 16S rRNA was a marker of antibiotic-induced killing, but the size of the amplified fragment was critical to differentiate between live and dead bacteria.
Resumo:
Real-time PCR is a widely used tool for the diagnosis of many infectious diseases. However, little information exists about the influences of the different factors involved in PCR on the amplification efficiency. The aim of this study was to analyze the effect of boiling as the DNA preparation method on the efficiency of the amplification process of real-time PCR for the diagnosis of human brucellosis with serum samples. Serum samples from 10 brucellosis patients were analyzed by a SYBR green I LightCycler-based real-time PCR and by using boiling to obtain the DNA. DNA prepared by boiling lysis of the bacteria isolated from serum did not prevent the presence of inhibitors, such as immunoglobulin G (IgG), which were extracted with the template DNA. To identify and confirm the presence of IgG, serum was precipitated to separate and concentrate the IgG and was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting. The use of serum volumes above 0.6 ml completely inhibited the amplification process. The inhibitory effect of IgG in serum samples was not concentration dependent, and it could be eliminated by diluting the samples 1/10 and 1/20 in water. Despite the lack of the complete elimination of the IgG from the template DNA, boiling does not require any special equipment and it provides a rapid, reproducible, and cost-effective method for the preparation of DNA from serum samples for the diagnosis of brucellosis.
Resumo:
Dilatation of the ascending aorta (AAD) is a prevalent aortopathy that occurs frequently associated with bicuspid aortic valve (BAV), the most common human congenital cardiac malformation. The molecular mechanisms leading to AAD associated with BAV are still poorly understood. The search for differentially expressed genes in diseased tissue by quantitative real-time PCR (qPCR) is an invaluable tool to fill this gap. However, studies dedicated to identify reference genes necessary for normalization of mRNA expression in aortic tissue are scarce. In this report, we evaluate the qPCR expression of six candidate reference genes in tissue from the ascending aorta of 52 patients with a variety of clinical and demographic characteristics, normal and dilated aortas, and different morphologies of the aortic valve (normal aorta and normal valve n = 30; dilated aorta and normal valve n = 10; normal aorta and BAV n = 4; dilated aorta and BAV n = 8). The expression stability of the candidate reference genes was determined with three statistical algorithms, GeNorm, NormFinder and Bestkeeper. The expression analyses showed that the most stable genes for the three algorithms employed were CDKN1β, POLR2A and CASC3, independently of the structure of the aorta and the valve morphology. In conclusion, we propose the use of these three genes as reference genes for mRNA expression analysis in human ascending aorta. However, we suggest searching for specific reference genes when conducting qPCR experiments with new cohort of samples.
Resumo:
We describe a simple method for detection of Plasmodium vivaxand Plasmodium falciparum infection in anophelines using a triplex TaqMan real-time polymerase chain reaction (PCR) assay (18S rRNA). We tested the assay on Anopheles darlingi and Anopheles stephensi colony mosquitoes fed withPlasmodium-infected blood meals and in duplicate on field collected An. darlingi. We compared the real-time PCR results of colony-infected and field collected An. darlingi, separately, to a conventional PCR method. We determined that a cytochromeb-PCR method was only 3.33% as sensitive and 93.38% as specific as our real-time PCR assay with field-collected samples. We demonstrate that this assay is sensitive, specific and reproducible.
Resumo:
Most airborne microorganisms are natural components of our ecosystem. Soil, vegetation and animals, including humans, are sources for aerial release of these living or dead cells. In the past, assessment of airborne microorganisms was mainly restricted to occupational health concerns. Indeed, in several occupations, exposure to very high concentrations of non-infectious airborne bacteria and fungi, result in allergenic, toxic or irritant reactions. Recently, the threat of bioterrorism and pandemics have highlighted the urgent need to increase knowledge of bioaerosol ecology. More fundamentally, airborne bacterial and fungal communities begin to draw much more consideration from environmental microbiologists, who have neglected this area for a long time. This increased interest of scientists is to a great part due to the development and use of real-time PCR techniques to identify and quantify airborne microorganisms. Even if the advantages of the PCR technology are obvious, researchers are confronted with new problems. This review describes the methodological state of the art in bioaerosols field and emphasizes the future challenges and perspectives of the real-time PCR-based methods for airborne microorganism studies.
Resumo:
Mycoplasma hominis is a fastidious micro-organism causing genital and extragenital infections. We developed a specific real-time PCR that exhibits high sensitivity and low intrarun and interrun variabilities. When applied to clinical samples, this quantitative PCR allowed to confirm the role of M. hominis in three patients with severe extragenital infections.
Resumo:
Originally composed of the single family Chlamydiaceae, the Chlamydiales order has extended considerably over the last several decades. Chlamydia-related bacteria were added and classified into six different families and family-level lineages: the Criblamydiaceae, Parachlamydiaceae, Piscichlamydiaceae, Rhabdochlamydiaceae, Simkaniaceae, and Waddliaceae. While several members of the Chlamydiaceae family are known pathogens, recent studies showed diverse associations of Chlamydia-related bacteria with human and animal infections. Some of these latter bacteria might be of medical importance since, given their ability to replicate in free-living amoebae, they may also replicate efficiently in other phagocytic cells, including cells of the innate immune system. Thus, a new Chlamydiales-specific real-time PCR targeting the conserved 16S rRNA gene was developed. This new molecular tool can detect at least five DNA copies and show very high specificity without cross-amplification from other bacterial clade DNA. The new PCR was validated with 128 clinical samples positive or negative for Chlamydia trachomatis or C. pneumoniae. Of 65 positive samples, 61 (93.8%) were found to be positive with the new PCR. The four discordant samples, retested with the original test, were determined to be negative or below detection limits. Then, the new PCR was applied to 422 nasopharyngeal swabs taken from children with or without pneumonia; a total of 48 (11.4%) samples were determined to be positive, and 45 of these were successfully sequenced. The majority of the sequences corresponded to Chlamydia-related bacteria and especially to members of the Parachlamydiaceae family.