950 resultados para Real number
Resumo:
A composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. Hence, this model was able to quickly quantify the time spent in each segment within the considered zone, as well as the composition and position of the requisite segments based on the vehicle fleet information, which not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bi-directional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. Although the CLSE model is intended to be applied in traffic management and transport analysis systems for the evaluation of exposure, as well as the simulation of vehicle emissions in traffic interrupted microenvironments, the bus station model can also be used for the input of initial source definitions in future dispersion models.
Resumo:
A number of advanced driver assistance systems (ADAS) are currently being released on the market, providing safety functions to the drivers such as collision avoidance, adaptive cruise control or enhanced night-vision. These systems however are inherently limited by their sensory range: they cannot gather information from outside this range, also called their “perceptive horizon”. Cooperative systems are a developing research avenue that aims at providing extended safety and comfort functionalities by introducing vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) wireless communications to the road actors. This paper presents the problematic of cooperative systems, their advantages and contributions to road safety and exposes some limitations related to market penetration, sensors accuracy and communications scalability. It explains the issues of how to implement extended perception, a central contribution of cooperative systems. The initial steps of an evaluation of data fusion architectures for extended perception are exposed.
Resumo:
The customary approach to the study of meal size suggests that ‘events’ occurring during a meal lead to its termination. Recent research, however, suggests that a number of decisions are made before eating commences that may affect meal size. The present study sought to address three key research questions around meal size: the extent to which plate cleaning occurs; prevalence of pre-meal planning and its influence on meal size; and the effect of within-meal experiences, notably the development of satiation. To address these, a large-cohort internet-based questionnaire was developed. Results showed that plate cleaning occurred at 91% of meals, and was planned from the outset in 92% of these cases. A significant relationship between plate cleaning and meal planning was observed. Pre meal plans were resistant to modification over the course of the meal: only 18% of participants reported consumption that deviated from expected. By contrast, 28% reported continuing eating beyond satiation, and 57% stated that they could have eaten more at the end of the meal. Logistic regression confirmed pre-meal planning as the most important predictor of consumption. Together, our findings demonstrate the importance of meal planning as a key determinant of meal size and energy intake.
Resumo:
One of the major fall outs from the Global Financial Crisis has been the decline in residential property construction, home lending and residential property prices. This has lead to some extent to a reduction in the number of small investors willing to commit funds to an investment market that is not seen to perform as well as other investment assets, particularly in relation to income return.With a decreasing supply of rental accommodation in the housing markets, less public housing being constructed by both State and Commonwealth Governments, there is the potential for the residential property market to provide more substantial returns than previous years.This paper will analyse the current residential housing market in Brisbane, Australia to determine if there are sectors in this market that are outperforming the average income and total return for residential investment property and the variation in investment performance across the various housing sub-markets. The results show that property investment in residential property provides opportunities to maximize returns based on geographic location and socio-economic economic status, with lower value areas showing the highest income returns and higher value suburbs showing greater capital returns
Resumo:
Facial expression is an important channel of human social communication. Facial expression recognition (FER) aims to perceive and understand emotional states of humans based on information in the face. Building robust and high performance FER systems that can work in real-world video is still a challenging task, due to the various unpredictable facial variations and complicated exterior environmental conditions, as well as the difficulty of choosing a suitable type of feature descriptor for extracting discriminative facial information. Facial variations caused by factors such as pose, age, gender, race and occlusion, can exert profound influence on the robustness, while a suitable feature descriptor largely determines the performance. Most present attention on FER has been paid to addressing variations in pose and illumination. No approach has been reported on handling face localization errors and relatively few on overcoming facial occlusions, although the significant impact of these two variations on the performance has been proved and highlighted in many previous studies. Many texture and geometric features have been previously proposed for FER. However, few comparison studies have been conducted to explore the performance differences between different features and examine the performance improvement arisen from fusion of texture and geometry, especially on data with spontaneous emotions. The majority of existing approaches are evaluated on databases with posed or induced facial expressions collected in laboratory environments, whereas little attention has been paid on recognizing naturalistic facial expressions on real-world data. This thesis investigates techniques for building robust and high performance FER systems based on a number of established feature sets. It comprises of contributions towards three main objectives: (1) Robustness to face localization errors and facial occlusions. An approach is proposed to handle face localization errors and facial occlusions using Gabor based templates. Template extraction algorithms are designed to collect a pool of local template features and template matching is then performed to covert these templates into distances, which are robust to localization errors and occlusions. (2) Improvement of performance through feature comparison, selection and fusion. A comparative framework is presented to compare the performance between different features and different feature selection algorithms, and examine the performance improvement arising from fusion of texture and geometry. The framework is evaluated for both discrete and dimensional expression recognition on spontaneous data. (3) Evaluation of performance in the context of real-world applications. A system is selected and applied into discriminating posed versus spontaneous expressions and recognizing naturalistic facial expressions. A database is collected from real-world recordings and is used to explore feature differences between standard database images and real-world images, as well as between real-world images and real-world video frames. The performance evaluations are based on the JAFFE, CK, Feedtum, NVIE, Semaine and self-collected QUT databases. The results demonstrate high robustness of the proposed approach to the simulated localization errors and occlusions. Texture and geometry have different contributions to the performance of discrete and dimensional expression recognition, as well as posed versus spontaneous emotion discrimination. These investigations provide useful insights into enhancing robustness and achieving high performance of FER systems, and putting them into real-world applications.
Resumo:
This paper presents a combined structure for using real, complex, and binary valued vectors for semantic representation. The theory, implementation, and application of this structure are all significant. For the theory underlying quantum interaction, it is important to develop a core set of mathematical operators that describe systems of information, just as core mathematical operators in quantum mechanics are used to describe the behavior of physical systems. The system described in this paper enables us to compare more traditional quantum mechanical models (which use complex state vectors), alongside more generalized quantum models that use real and binary vectors. The implementation of such a system presents fundamental computational challenges. For large and sometimes sparse datasets, the demands on time and space are different for real, complex, and binary vectors. To accommodate these demands, the Semantic Vectors package has been carefully adapted and can now switch between different number types comparatively seamlessly. This paper describes the key abstract operations in our semantic vector models, and describes the implementations for real, complex, and binary vectors. We also discuss some of the key questions that arise in the field of quantum interaction and informatics, explaining how the wide availability of modelling options for different number fields will help to investigate some of these questions.
Resumo:
Motor unit number estimation (MUNE) is a method which aims to provide a quantitative indicator of progression of diseases that lead to loss of motor units, such as motor neurone disease. However the development of a reliable, repeatable and fast real-time MUNE method has proved elusive hitherto. Ridall et al. (2007) implement a reversible jump Markov chain Monte Carlo (RJMCMC) algorithm to produce a posterior distribution for the number of motor units using a Bayesian hierarchical model that takes into account biological information about motor unit activation. However we find that the approach can be unreliable for some datasets since it can suffer from poor cross-dimensional mixing. Here we focus on improved inference by marginalising over latent variables to create the likelihood. In particular we explore how this can improve the RJMCMC mixing and investigate alternative approaches that utilise the likelihood (e.g. DIC (Spiegelhalter et al., 2002)). For this model the marginalisation is over latent variables which, for a larger number of motor units, is an intractable summation over all combinations of a set of latent binary variables whose joint sample space increases exponentially with the number of motor units. We provide a tractable and accurate approximation for this quantity and also investigate simulation approaches incorporated into RJMCMC using results of Andrieu and Roberts (2009).
Resumo:
This article argues for an interdisciplinary approach to mathematical problem solving at the elementary school, one that draws upon the engineering domain. A modeling approach, using engineering model eliciting activities, might provide a rich source of meaningful situations that capitalize on and extend students’ existing mathematical learning. The study reports on the developments of 48 twelve-year old students who worked on the Bridge Design activity. Results revealed that young students, even before formal instruction, have the capacity to deal with complex interdisciplinary problems. A number of students created quite appropriate models by developing the necessary mathematical constructs to solve the problem. Students’ difficulties in mathematizing the problem, and in revising and documenting their models are presented and analysed, followed by a discussion on the appropriateness of a modeling approach as a means for introducing complex problems to elementary school students.
Resumo:
Internet services are important part of daily activities for most of us. These services come with sophisticated authentication requirements which may not be handled by average Internet users. The management of secure passwords for example creates an extra overhead which is often neglected due to usability reasons. Furthermore, password-based approaches are applicable only for initial logins and do not protect against unlocked workstation attacks. In this paper, we provide a non-intrusive identity verification scheme based on behavior biometrics where keystroke dynamics based-on free-text is used continuously for verifying the identity of a user in real-time. We improved existing keystroke dynamics based verification schemes in four aspects. First, we improve the scalability where we use a constant number of users instead of whole user space to verify the identity of target user. Second, we provide an adaptive user model which enables our solution to take the change of user behavior into consideration in verification decision. Next, we identify a new distance measure which enables us to verify identity of a user with shorter text. Fourth, we decrease the number of false results. Our solution is evaluated on a data set which we have collected from users while they were interacting with their mail-boxes during their daily activities.
Resumo:
AIMS The aims of the study are to characterize changes in JK-1 (FAM134B) at the DNA level in colorectal adenocarcinoma and adenoma and exploring the possible correlations with clinical and pathological features. METHOD JK-1 gene DNA copy number changes were studied in 211 colorectal carcinomas, 32 colorectal adenoma and 20 colorectal non-cancer colorectal tissue samples by real-time quantitative polymerase chain reaction. The results were correlated with clinical and pathological parameters. RESULTS Colorectal adenomas were more likely to be amplified than deleted with regard to JK-1 (FAM134B) DNA copy number change. The copy number level of JK-1 (FAM134B) DNA in colorectal adenocarcinomas was significantly lower in comparison to colorectal adenomas. Changes in JK-1 (FAM134B) DNA copy number were associated with histological subtypes, and cancer stage. Lower copy numbers were associated with higher tumor stage, lymph node stage and overall pathological stage of cancer. Conversely, higher DNA copy numbers were detected more often in the mucinous adenocarcinoma. CONCLUSIONS This is the first study showing significant correlations of the JK-1 (FAM134B) gene copy number alterations with clinical and pathological features in a large cohort of pre-invasive and invasive colorectal malignancies. The changes in DNA copy number associated with progression of colorectal malignancies reflect that JK-1 (FAM134B) gene could play a role in controlling some steps in development of the invasive phenotypes.
Resumo:
Exhaust emissions were monitored in real-time at the kerb of a busy busway used by a mix of diesel and CNG-powered transport buses. Particle number concentration in the size range 3 nm to 3 µm was measured with a TSI condensation particle counter (CPC 3025). Particle mass (PM2.5) was measured with a TSI Dustrak 8520. The CO2 emissions were measured with a fast response CO2 analyser (Sable CA-10A). All emission concentrations were recorded in real time at 1 sec resolution, together with the precise passage times of buses. The instantaneous ratio of particle number (or mass) to CO2 concentration, denoted Z, was used as a measure of the particle number (or mass) emission factor of each passing bus.
Resumo:
With the recent development of advanced metering infrastructure, real-time pricing (RTP) scheme is anticipated to be introduced in future retail electricity market. This paper proposes an algorithm for a home energy management scheduler (HEMS) to reduce the cost of energy consumption using RTP. The proposed algorithm works in three subsequent phases namely real-time monitoring (RTM), stochastic scheduling (STS) and real-time control (RTC). In RTM phase, characteristics of available controllable appliances are monitored in real-time and stored in HEMS. In STS phase, HEMS computes an optimal policy using stochastic dynamic programming (SDP) to select a set of appliances to be controlled with an objective of the total cost of energy consumption in a house. Finally, in RTC phase, HEMS initiates the control of the selected appliances. The proposed HEMS is unique as it intrinsically considers uncertainties in RTP and power consumption pattern of various appliances. In RTM phase, appliances are categorized according to their characteristics to ease the control process, thereby minimizing the number of control commands issued by HEMS. Simulation results validate the proposed method for HEMS.
Resumo:
Policy makers, urban planners and economic geographers readily acknowledge the potential value of industrial clustering. Clusters attract policy makers’ interest because it is widely held that they are a way of connecting agglomeration to innovation and human capital to investment. Urban planners view clustering as a way of enticing creative human capital, the so-called ‘creative class’, that is, creative people are predisposed to live where there is a range of cultural infrastructure and amenities. Economists and geographers have contrived to promote clustering as a solution to stalled regional development. In the People’s Republic of China, over the past decade the cluster has become the default setting of the cultural and creative industries, the latter a composite term applied to the quantifiable outputs of artists, designers and media workers as well as related service sectors such as tourism, advertising and management. The thinking behind many cluster projects is to ‘pick winners’. In this sense the rapid expansion in the number of cultural and creative clusters in China over the past decade is not so very different from the early 1990s, a period that saw an outbreak of innovation parks, most of which inevitably failed to deliver measurable innovation and ultimately served as revenue-generating sources for district governments via real estate speculation. Since the early years of the first decade of the new millennium the cluster model has been pressed into the service of cultural development.
Resumo:
Observing the working procedure of construction workers is an effective means of maintaining the safety performance of a construction project. It is also difficult to achieve due to a high worker-to-safety-officer ratio. There is an imminent need for the development of a tool to assist in the real-time monitoring of workers, in order to reduce the number of construction accidents. The development and application of a real time locating system (RTLS) based on the Chirp Spread Spectrum (CSS) technique is described in this paper for tracking the real-time position of workers on construction sites. Experiments and tests were carried out both on- and off-site to verify the accuracy of static and dynamic targets by the system, indicating an average error of within one metre. Experiments were also carried out to verify the ability of the system to identify workers’ unsafe behaviours. Wireless data transfer was used to simplify the deployment of the system. The system was deployed in a public residential construction project and proved to be quick and simple to use. The cost of the developed system is also reported to be reasonable (around 1800USD) in this study and is much cheaper than the cost of other RTLS. In addition, the CCS technique is shown to provide an economical solution with reasonable accuracy compared with other positioning systems, such as ultra wideband. The study verifies the potential of the CCS technique to provide an effective and economical aid in the improvement of safety management in the construction industry.
Size-resolved particle distribution and gaseous concentrations by real-world road tunnel measurement
Resumo:
Measurements of aerosol particle number size distributions (15-700 nm), CO and NOx were performed in a bus tunnel, Australia. Daily mean particle size distributions of mixed diesel/CNG (Compressed Natural Gas) buses traffic flow were determined in 4 consecutive measurement days. EFs (Emission Factors) of Particle size distribution of diesel buses and CNG buses were obtained by MLR (Multiple Linear Regression) methods, particle distributions of diesel buses and CNG buses were observed as single accumulation mode and nuclei-mode separately. Particle size distributions of mixed traffic flow were decomposed by two log-normal fitting curves for each 30 minutes interval mean scans, all the mix fleet PSD emission can be well fitted by the summation of two log-normal distribution curves, and these were composed of nuclei mode curve and accumulation curve, which were affirmed as the CNG buses and diesel buses PN emission curves respectively. Finally, particle size distributions of diesel buses and CNG buses were quantified by statistical whisker-box charts. For log-normal particle size distribution of diesel buses, accumulation mode diameters were 74.5~87.5nm, geometric standard deviations were 1.89~1.98. As to log-normal particle size distribution of CNG buses, nuclei-mode diameters were 21~24 nm, geometric standard deviations were 1.27~1.31.