991 resultados para Random variables
Resumo:
clRNG et clProbdist sont deux interfaces de programmation (APIs) que nous avons développées pour la génération de nombres aléatoires uniformes et non uniformes sur des dispositifs de calculs parallèles en utilisant l’environnement OpenCL. La première interface permet de créer au niveau d’un ordinateur central (hôte) des objets de type stream considérés comme des générateurs virtuels parallèles qui peuvent être utilisés aussi bien sur l’hôte que sur les dispositifs parallèles (unités de traitement graphique, CPU multinoyaux, etc.) pour la génération de séquences de nombres aléatoires. La seconde interface permet aussi de générer au niveau de ces unités des variables aléatoires selon différentes lois de probabilité continues et discrètes. Dans ce mémoire, nous allons rappeler des notions de base sur les générateurs de nombres aléatoires, décrire les systèmes hétérogènes ainsi que les techniques de génération parallèle de nombres aléatoires. Nous présenterons aussi les différents modèles composant l’architecture de l’environnement OpenCL et détaillerons les structures des APIs développées. Nous distinguons pour clRNG les fonctions qui permettent la création des streams, les fonctions qui génèrent les variables aléatoires uniformes ainsi que celles qui manipulent les états des streams. clProbDist contient les fonctions de génération de variables aléatoires non uniformes selon la technique d’inversion ainsi que les fonctions qui permettent de retourner différentes statistiques des lois de distribution implémentées. Nous évaluerons ces interfaces de programmation avec deux simulations qui implémentent un exemple simplifié d’un modèle d’inventaire et un exemple d’une option financière. Enfin, nous fournirons les résultats d’expérimentation sur les performances des générateurs implémentés.
Resumo:
In this article we introduce some structural relationships between weighted and original variables in the context of maintainability function and reversed repair rate. Furthermore, we prove some characterization theorems for specific models such as power, exponential, Pareto II, beta, and Pearson system of distributions using the relationships between the original and weighted random variables
Resumo:
The present work is intended to discuss various properties and reliability aspects of higher order equilibrium distributions in continuous, discrete and multivariate cases, which contribute to the study on equilibrium distributions. At first, we have to study and consolidate the existing literature on equilibrium distributions. For this we need some basic concepts in reliability. These are being discussed in the 2nd chapter, In Chapter 3, some identities connecting the failure rate functions and moments of residual life of the univariate, non-negative continuous equilibrium distributions of higher order and that of the baseline distribution are derived. These identities are then used to characterize the generalized Pareto model, mixture of exponentials and gamma distribution. An approach using the characteristic functions is also discussed with illustrations. Moreover, characterizations of ageing classes using stochastic orders has been discussed. Part of the results of this chapter has been reported in Nair and Preeth (2009). Various properties of equilibrium distributions of non-negative discrete univariate random variables are discussed in Chapter 4. Then some characterizations of the geo- metric, Waring and negative hyper-geometric distributions are presented. Moreover, the ageing properties of the original distribution and nth order equilibrium distribu- tions are compared. Part of the results of this chapter have been reported in Nair, Sankaran and Preeth (2012). Chapter 5 is a continuation of Chapter 4. Here, several conditions, in terms of stochastic orders connecting the baseline and its equilibrium distributions are derived. These conditions can be used to rede_ne certain ageing notions. Then equilibrium distributions of two random variables are compared in terms of various stochastic orders that have implications in reliability applications. In Chapter 6, we make two approaches to de_ne multivariate equilibrium distribu- tions of order n. Then various properties including characterizations of higher order equilibrium distributions are presented. Part of the results of this chapter have been reported in Nair and Preeth (2008). The Thesis is concluded in Chapter 7. A discussion on further studies on equilib- rium distributions is also made in this chapter.
Resumo:
Im Rahmen dieser Arbeit wird eine gemeinsame Optimierung der Hybrid-Betriebsstrategie und des Verhaltens des Verbrennungsmotors vorgestellt. Die Übernahme von den im Steuergerät verwendeten Funktionsmodulen in die Simulationsumgebung für Fahrzeuglängsdynamik stellt eine effiziente Applikationsmöglichkeit der Originalparametrierung dar. Gleichzeitig ist es notwendig, das Verhalten des Verbrennungsmotors derart nachzubilden, dass das stationäre und das dynamische Verhalten, inklusive aller relevanten Einflussmöglichkeiten, wiedergegeben werden kann. Das entwickelte Werkzeug zur Übertragung der in Ascet definierten Steurgerätefunktionen in die Simulink-Simulationsumgebung ermöglicht nicht nur die Simulation der relevanten Funktionsmodule, sondern es erfüllt auch weitere wichtige Eigenschaften. Eine erhöhte Flexibilität bezüglich der Daten- und Funktionsstandänderungen, sowie die Parametrierbarkeit der Funktionsmodule sind Verbesserungen die an dieser Stelle zu nennen sind. Bei der Modellierung des stationären Systemverhaltens des Verbrennungsmotors erfolgt der Einsatz von künstlichen neuronalen Netzen. Die Auswahl der optimalen Neuronenanzahl erfolgt durch die Betrachtung des SSE für die Trainings- und die Verifikationsdaten. Falls notwendig, wird zur Sicherstellung der angestrebten Modellqualität, das Interpolationsverhalten durch Hinzunahme von Gauß-Prozess-Modellen verbessert. Mit den Gauß-Prozess-Modellen werden hierbei zusätzliche Stützpunkte erzeugt und mit einer verminderten Priorität in die Modellierung eingebunden. Für die Modellierung des dynamischen Systemverhaltens werden lineare Übertragungsfunktionen verwendet. Bei der Minimierung der Abweichung zwischen dem Modellausgang und den Messergebnissen wird zusätzlich zum SSE das 2σ-Intervall der relativen Fehlerverteilung betrachtet. Die Implementierung der Steuergerätefunktionsmodule und der erstellten Steller-Sensor-Streckenmodelle in der Simulationsumgebung für Fahrzeuglängsdynamik führt zum Anstieg der Simulationszeit und einer Vergrößerung des Parameterraums. Das aus Regelungstechnik bekannte Verfahren der Gütevektoroptimierung trägt entscheidend zu einer systematischen Betrachtung und Optimierung der Zielgrößen bei. Das Ergebnis des Verfahrens ist durch das Optimum der Paretofront der einzelnen Entwurfsspezifikationen gekennzeichnet. Die steigenden Simulationszeiten benachteiligen Minimumsuchverfahren, die eine Vielzahl an Iterationen benötigen. Um die Verwendung einer Zufallsvariablen, die maßgeblich zur Steigerung der Iterationanzahl beiträgt, zu vermeiden und gleichzeitig eine Globalisierung der Suche im Parameterraum zu ermöglichen wird die entwickelte Methode DelaunaySearch eingesetzt. Im Gegensatz zu den bekannten Algorithmen, wie die Partikelschwarmoptimierung oder die evolutionären Algorithmen, setzt die neu entwickelte Methode bei der Suche nach dem Minimum einer Kostenfunktion auf eine systematische Analyse der durchgeführten Simulationsergebnisse. Mit Hilfe der bei der Analyse gewonnenen Informationen werden Bereiche mit den bestmöglichen Voraussetzungen für ein Minimum identifiziert. Somit verzichtet das iterative Verfahren bei der Bestimmung des nächsten Iterationsschrittes auf die Verwendung einer Zufallsvariable. Als Ergebnis der Berechnungen steht ein gut gewählter Startwert für eine lokale Optimierung zur Verfügung. Aufbauend auf der Simulation der Fahrzeuglängsdynamik, der Steuergerätefunktionen und der Steller-Sensor-Streckenmodelle in einer Simulationsumgebung wird die Hybrid-Betriebsstrategie gemeinsam mit der Steuerung des Verbrennungsmotors optimiert. Mit der Entwicklung und Implementierung einer neuen Funktion wird weiterhin die Verbindung zwischen der Betriebsstrategie und der Motorsteuerung erweitert. Die vorgestellten Werkzeuge ermöglichten hierbei nicht nur einen Test der neuen Funktionalitäten, sondern auch eine Abschätzung der Verbesserungspotentiale beim Verbrauch und Abgasemissionen. Insgesamt konnte eine effiziente Testumgebung für eine gemeinsame Optimierung der Betriebsstrategie und des Verbrennungsmotorverhaltens eines Hybridfahrzeugs realisiert werden.
Resumo:
Support Vector Machines Regression (SVMR) is a regression technique which has been recently introduced by V. Vapnik and his collaborators (Vapnik, 1995; Vapnik, Golowich and Smola, 1996). In SVMR the goodness of fit is measured not by the usual quadratic loss function (the mean square error), but by a different loss function called Vapnik"s $epsilon$- insensitive loss function, which is similar to the "robust" loss functions introduced by Huber (Huber, 1981). The quadratic loss function is well justified under the assumption of Gaussian additive noise. However, the noise model underlying the choice of Vapnik's loss function is less clear. In this paper the use of Vapnik's loss function is shown to be equivalent to a model of additive and Gaussian noise, where the variance and mean of the Gaussian are random variables. The probability distributions for the variance and mean will be stated explicitly. While this work is presented in the framework of SVMR, it can be extended to justify non-quadratic loss functions in any Maximum Likelihood or Maximum A Posteriori approach. It applies not only to Vapnik's loss function, but to a much broader class of loss functions.
Resumo:
The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Central notations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform. In this way very elaborated aspects of mathematical statistics can be understood easily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating, combination of likelihood and robust M-estimation functions are simple additions/ perturbations in A2(Pprior). Weighting observations corresponds to a weighted addition of the corresponding evidence. Likelihood based statistics for general exponential families turns out to have a particularly easy interpretation in terms of A2(P). Regular exponential families form finite dimensional linear subspaces of A2(P) and they correspond to finite dimensional subspaces formed by their posterior in the dual information space A2(Pprior). The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P. The discussion of A2(P) valued random variables, such as estimation functions or likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning
Resumo:
First discussion on compositional data analysis is attributable to Karl Pearson, in 1897. However, notwithstanding the recent developments on algebraic structure of the simplex, more than twenty years after Aitchison’s idea of log-transformations of closed data, scientific literature is again full of statistical treatments of this type of data by using traditional methodologies. This is particularly true in environmental geochemistry where besides the problem of the closure, the spatial structure (dependence) of the data have to be considered. In this work we propose the use of log-contrast values, obtained by a simplicial principal component analysis, as LQGLFDWRUV of given environmental conditions. The investigation of the log-constrast frequency distributions allows pointing out the statistical laws able to generate the values and to govern their variability. The changes, if compared, for example, with the mean values of the random variables assumed as models, or other reference parameters, allow defining monitors to be used to assess the extent of possible environmental contamination. Case study on running and ground waters from Chiavenna Valley (Northern Italy) by using Na+, K+, Ca2+, Mg2+, HCO3-, SO4 2- and Cl- concentrations will be illustrated
Resumo:
A joint distribution of two discrete random variables with finite support can be displayed as a two way table of probabilities adding to one. Assume that this table has n rows and m columns and all probabilities are non-null. This kind of table can be seen as an element in the simplex of n · m parts. In this context, the marginals are identified as compositional amalgams, conditionals (rows or columns) as subcompositions. Also, simplicial perturbation appears as Bayes theorem. However, the Euclidean elements of the Aitchison geometry of the simplex can also be translated into the table of probabilities: subspaces, orthogonal projections, distances. Two important questions are addressed: a) given a table of probabilities, which is the nearest independent table to the initial one? b) which is the largest orthogonal projection of a row onto a column? or, equivalently, which is the information in a row explained by a column, thus explaining the interaction? To answer these questions three orthogonal decompositions are presented: (1) by columns and a row-wise geometric marginal, (2) by rows and a columnwise geometric marginal, (3) by independent two-way tables and fully dependent tables representing row-column interaction. An important result is that the nearest independent table is the product of the two (row and column)-wise geometric marginal tables. A corollary is that, in an independent table, the geometric marginals conform with the traditional (arithmetic) marginals. These decompositions can be compared with standard log-linear models. Key words: balance, compositional data, simplex, Aitchison geometry, composition, orthonormal basis, arithmetic and geometric marginals, amalgam, dependence measure, contingency table
Resumo:
A novel test of spatial independence of the distribution of crystals or phases in rocks based on compositional statistics is introduced. It improves and generalizes the common joins-count statistics known from map analysis in geographic information systems. Assigning phases independently to objects in RD is modelled by a single-trial multinomial random function Z(x), where the probabilities of phases add to one and are explicitly modelled as compositions in the K-part simplex SK. Thus, apparent inconsistencies of the tests based on the conventional joins{count statistics and their possibly contradictory interpretations are avoided. In practical applications we assume that the probabilities of phases do not depend on the location but are identical everywhere in the domain of de nition. Thus, the model involves the sum of r independent identical multinomial distributed 1-trial random variables which is an r-trial multinomial distributed random variable. The probabilities of the distribution of the r counts can be considered as a composition in the Q-part simplex SQ. They span the so called Hardy-Weinberg manifold H that is proved to be a K-1-affine subspace of SQ. This is a generalisation of the well-known Hardy-Weinberg law of genetics. If the assignment of phases accounts for some kind of spatial dependence, then the r-trial probabilities do not remain on H. This suggests the use of the Aitchison distance between observed probabilities to H to test dependence. Moreover, when there is a spatial uctuation of the multinomial probabilities, the observed r-trial probabilities move on H. This shift can be used as to check for these uctuations. A practical procedure and an algorithm to perform the test have been developed. Some cases applied to simulated and real data are presented. Key words: Spatial distribution of crystals in rocks, spatial distribution of phases, joins-count statistics, multinomial distribution, Hardy-Weinberg law, Hardy-Weinberg manifold, Aitchison geometry
Resumo:
Lecture notes in LaTex
Resumo:
Exercises and solutions in LaTex
Resumo:
Lecture notes in PDF
Resumo:
Exercises and solutions in PDF
Resumo:
La variable aleatoria es una función matemática que permite asignar valores numéricos a cada uno de los posibles resultados obtenidos en un evento de naturaleza aleatoria. Si el número de estos resultados se puede contar, se tiene un conjunto discreto; por el contrario, cuando el número de resultados es infinito y no se puede contar, se tiene un conjunto continuo. El objetivo de la variable aleatoria es permitir adelantar estudios probabilísticos y estadísticos a partir del establecimiento de una asignación numérica a través de la cual se identifiquen cada uno de los resultados que pueden ser obtenidos en el desarrollo de un evento determinado. El valor esperado y la varianza son los parámetros por medio de los cuales es posible caracterizar el comportamiento de los datos reunidos en el desarrollo de una situación experimental; el valor esperado permite establecer el valor sobre el cual se centra la distribución de la probabilidad, mientras que la varianza proporciona información acerca de la manera como se distribuyen los datos obtenidos. Adicionalmente, las distribuciones de probabilidad son funciones numéricas asociadas a la variable aleatoria que describen la asignación de probabilidad para cada uno de los elementos del espacio muestral y se caracterizan por ser un conjunto de parámetros que establecen su comportamiento funcional, es decir, cada uno de los parámetros propios de la distribución suministra información del experimento aleatorio al que se asocia. El documento se cierra con una aproximación de la variable aleatoria a procesos de toma de decisión que implican condiciones de riesgo e incertidumbre.
Resumo:
Este documento se concentra en el estudio de las diferencias salariales mediante la comparación de las distribuciones de los salarios para las siete principales ciudades colombianas en el periodo 2001-2005 con datos de la Encuesta Continua de Hogares. Se detectan diferencias significativas que se explican a la luz de la teoría del capital humano y de segmentación laboral; mediante la estimación de ecuaciones de salarios a partir de las características socioeconómicas de los trabajadores junto con efectos particulares para región y rama de actividad económica que resultan significativos dando evidencia de segmentación del mercado laboralen Colombia. El componente de los salarios que es particular a la región y a la actividad económica se explica a partir de variables macroeconómicas como el crecimiento económico, la dotación sectorial de factores, el costo de vida y el desempleo a nivel regional.