986 resultados para RAT HIPPOCAMPUS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hebb proposed that synapses between neurons that fire synchronously are strengthened, forming cell assemblies and phase sequences. The former, on a shorter scale, are ensembles of synchronized cells that function transiently as a closed processing system; the latter, on a larger scale, correspond to the sequential activation of cell assemblies able to represent percepts and behaviors. Nowadays, the recording of large neuronal populations allows for the detection of multiple cell assemblies. Within Hebb’s theory, the next logical step is the analysis of phase sequences. Here we detected phase sequences as consecutive assembly activation patterns, and then analyzed their graph attributes in relation to behavior. We investigated action potentials recorded from the adult rat hippocampus and neocortex before, during and after novel object exploration (experimental periods). Within assembly graphs, each assembly corresponded to a node, and each edge corresponded to the temporal sequence of consecutive node activations. The sum of all assembly activations was proportional to firing rates, but the activity of individual assemblies was not. Assembly repertoire was stable across experimental periods, suggesting that novel experience does not create new assemblies in the adult rat. Assembly graph attributes, on the other hand, varied significantly across behavioral states and experimental periods, and were separable enough to correctly classify experimental periods (Naïve Bayes classifier; maximum AUROCs ranging from 0.55 to 0.99) and behavioral states (waking, slow wave sleep, and rapid eye movement sleep; maximum AUROCs ranging from 0.64 to 0.98). Our findings agree with Hebb’s view that neuronal assemblies correspond to primitive building blocks of representation, nearly unchanged in 10 the adult, while phase sequences are labile across behavioral states and change after novel experience. The results are compatible with a role for phase sequences in behavior and cognition

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent progress in the technology for single unit recordings has given the neuroscientific community theopportunity to record the spiking activity of large neuronal populations. At the same pace, statistical andmathematical tools were developed to deal with high-dimensional datasets typical of such recordings.A major line of research investigates the functional role of subsets of neurons with significant co-firingbehavior: the Hebbian cell assemblies. Here we review three linear methods for the detection of cellassemblies in large neuronal populations that rely on principal and independent component analysis.Based on their performance in spike train simulations, we propose a modified framework that incorpo-rates multiple features of these previous methods. We apply the new framework to actual single unitrecordings and show the existence of cell assemblies in the rat hippocampus, which typically oscillate attheta frequencies and couple to different phases of the underlying field rhythm

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hebb proposed that synapses between neurons that fire synchronously are strengthened, forming cell assemblies and phase sequences. The former, on a shorter scale, are ensembles of synchronized cells that function transiently as a closed processing system; the latter, on a larger scale, correspond to the sequential activation of cell assemblies able to represent percepts and behaviors. Nowadays, the recording of large neuronal populations allows for the detection of multiple cell assemblies. Within Hebb's theory, the next logical step is the analysis of phase sequences. Here we detected phase sequences as consecutive assembly activation patterns, and then analyzed their graph attributes in relation to behavior. We investigated action potentials recorded from the adult rat hippocampus and neocortex before, during and after novel object exploration (experimental periods). Within assembly graphs, each assembly corresponded to a node, and each edge corresponded to the temporal sequence of consecutive node activations. The sum of all assembly activations was proportional to firing rates, but the activity of individual assemblies was not. Assembly repertoire was stable across experimental periods, suggesting that novel experience does not create new assemblies in the adult rat. Assembly graph attributes, on the other hand, varied significantly across behavioral states and experimental periods, and were separable enough to correctly classify experimental periods (Naïve Bayes classifier; maximum AUROCs ranging from 0.55 to 0.99) and behavioral states (waking, slow wave sleep, and rapid eye movement sleep; maximum AUROCs ranging from 0.64 to 0.98). Our findings agree with Hebb's view that assemblies correspond to primitive building blocks of representation, nearly unchanged in the adult, while phase sequences are labile across behavioral states and change after novel experience. The results are compatible with a role for phase sequences in behavior and cognition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microglial cells are the resident immune cells of central nervous system (CNS) and the major players in neuroinflammation. These cells are also responsible for surveilling the neuronal microenvironment, and upon injury to the CNS they change their morphology and molecular profile and become activated. Activated status is associated with microglia proliferation, migration to injury foci, increased phagocytic capacity, production and release of reactive oxygen species (ROS), cytokines (pro- or anti-inflammatory) and reactive nitrogen species. Microglia activation is crucial for tissue repair in the healthy brain. However, their chronic activation or deregulation might contribute for the pathophysiology of neurodegenerative diseases. A better understanding of the mechanisms underlying microglial cell activation is important for defining targets and develop appropriate therapeutic strategies to control the chronic activation of microglia. It has been observed an increase in profilin (Pfn) mRNA in microglial cells in the rat hippocampus after unilateral ablation of its major extrinsic input, the entorhinal cortex. This observation suggested that Pfn might be involved in microglia activation. Pfn1 is an actin binding protein that controls assembly and disassembly of actin filaments and is important for several cellular processes, including, motility, cell proliferation and survival. Here, we studied the role of Pfn1 in microglial cell function. For that, we used primary cortical microglial cell cultures and microglial cell lines in which we knocked down Pfn1 expression and assessed the activation status of microglia, based on classical activation markers, such as: phagocytosis, glutamate release, reactive oxygen species (ROS), pro- and anti-inflammatory cytokines. We demonstrated that Pfn1 (i) is more active in hypoxia-challenged microglia, (ii) modulates microglia pro- and anti-inflammatory signatures and (iii) plays a critical role in ROS generation in microglia. Altogether, we conclude that Pfn1 is a key protein for microglia homeostasis, playing an essential role in their activation, regardless the polarization into a pro or anti-inflammatory signature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent progress in the technology for single unit recordings has given the neuroscientific community theopportunity to record the spiking activity of large neuronal populations. At the same pace, statistical andmathematical tools were developed to deal with high-dimensional datasets typical of such recordings.A major line of research investigates the functional role of subsets of neurons with significant co-firingbehavior: the Hebbian cell assemblies. Here we review three linear methods for the detection of cellassemblies in large neuronal populations that rely on principal and independent component analysis.Based on their performance in spike train simulations, we propose a modified framework that incorpo-rates multiple features of these previous methods. We apply the new framework to actual single unitrecordings and show the existence of cell assemblies in the rat hippocampus, which typically oscillate attheta frequencies and couple to different phases of the underlying field rhythm

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hebb proposed that synapses between neurons that fire synchronously are strengthened, forming cell assemblies and phase sequences. The former, on a shorter scale, are ensembles of synchronized cells that function transiently as a closed processing system; the latter, on a larger scale, correspond to the sequential activation of cell assemblies able to represent percepts and behaviors. Nowadays, the recording of large neuronal populations allows for the detection of multiple cell assemblies. Within Hebb's theory, the next logical step is the analysis of phase sequences. Here we detected phase sequences as consecutive assembly activation patterns, and then analyzed their graph attributes in relation to behavior. We investigated action potentials recorded from the adult rat hippocampus and neocortex before, during and after novel object exploration (experimental periods). Within assembly graphs, each assembly corresponded to a node, and each edge corresponded to the temporal sequence of consecutive node activations. The sum of all assembly activations was proportional to firing rates, but the activity of individual assemblies was not. Assembly repertoire was stable across experimental periods, suggesting that novel experience does not create new assemblies in the adult rat. Assembly graph attributes, on the other hand, varied significantly across behavioral states and experimental periods, and were separable enough to correctly classify experimental periods (Naïve Bayes classifier; maximum AUROCs ranging from 0.55 to 0.99) and behavioral states (waking, slow wave sleep, and rapid eye movement sleep; maximum AUROCs ranging from 0.64 to 0.98). Our findings agree with Hebb's view that assemblies correspond to primitive building blocks of representation, nearly unchanged in the adult, while phase sequences are labile across behavioral states and change after novel experience. The results are compatible with a role for phase sequences in behavior and cognition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gating of sensory information can be assessed using an auditory conditioning-test paradigm which measures the reduction in the auditory evoked response to a test stimulus following an initial conditioning stimulus. Recording brainwaves from specific areas of the brain using multiple electrodes is helpful in the study of the neurobiology of sensory gating. In this paper, we use such technology to investigate the role of cannabinoids in sensory gating in the CA3 region of the rat hippocampus. Our experimental results show that application of the exogenous cannabinoid agonist WIN55,212-2 can abolish sensory gating. We have developed a phenomenological model of cannabinoid dynamics incorporated within a spiking neural network model of CA3 with synaptically interacting pyramidal and basket cells. Direct numerical simulations of this model suggest that the basic mechanism for this effect can be traced to the suppression of inhibition of slow GABAB synapses. Furthermore, by working with a simpler mathematical firing rate model we are able to show the robustness of this mechanism for the abolition of sensory gating.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ex vivo H-1 NMR spectroscopy was used to measure changes in the concentrations of cerebral metabolites in the prefrontal cortex (PFC) and hippocampus of rats subjected to repeated morphine treatment known to cause tolerance/dependence. The results show th

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to investigate the effect of extremely low-frequency electromagnetic field (ELF-EMF) exposure during morphine treatment on dopamine D2 receptor (D2R) density in the rat dorsal hippocampus following withdrawal. Rats were exposed t

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to identify molecular pathways involved in audiogenic seizures in the epilepsy-prone Wistar Audiogenic Rat (WAR). For this, we used a suppression-subtractive hybridization (SSH) library from the hippocampus of WARs coupled to microarray comparative gene expression analysis, followed by Northern blot validation of individual genes. We discovered that the levels of the non-protein coding (npc) RNA BC1 were significantly reduced in the hippocampus of WARs submitted to repeated audiogenic seizures (audiogenic kindling) when compared to Wistar resistant rats and to both naive WARs and Wistars. By quantitative in situ hybridization, we verified lower levels of BC1 RNA in the GD-hilus and significant signal ratio reduction in the stratum radiatum and stratum pyramidale of hippocampal CA3 subfield of audiogenic kindled animals. Functional results recently obtained in a BC1-/- mouse model and our current data are supportive of a potential disruption in signaling pathways, upstream of BC1, associated with the seizure susceptibility of WARs. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Wistar Audiogenic Rat (WAR) is an epileptic-prone strain developed by genetic selection from a Wistar progenitor based on the pattern of behavioral response to sound stimulation. Chronic acoustic stimulation protocols of WARs (audiogenic kindling) generate limbic epileptogenesis, confirmed by ictal semiology, amygdale, and hippocampal EEG, accompanied by hippocampal and amygdala cell loss, as well as neurogenesis in the dentate gyrus (DG). In an effort to identify genes involved in molecular mechanisms underlying epileptic process, we used suppression-subtractive hybridization to construct normalized cDNA library enriched for transcripts expressed in the hippocampus of WARs. The most represented gene among the 133 clones sequenced was the ionotropic glutamate receptor subunit II (GluR2), a member of the a-amino-3-hydroxy-5-methyl-4-isoxazoleopropionic acid (AMPA) receptor. Although semiquantitative RT-PCR analysis shows that the hippocampal levels of the GluR2 subunits do not differ between naive WARs and their Wistar counterparts, we observed that the expression of the transcript encoding the splice-variant GluR2-flip is increased in the hippocampus of WARs submitted to both acute and kindled audiogenic seizures. Moreover, using in situ hybridization, we verified upregulation of GluR2-flip mainly in the CA1 region, among the hippocampal subfields of audiogenic kindled WARs. Our findings on differential upregulation of GluR2-flip isoform in the hippocampus of WARs displaying audiogenic seizures is original and agree with and extend previous immunohistochemical for GluR2 data obtained in the Chinese P77PMC audiogenic rat strain, reinforcing the association of limbic AMPA alterations with epileptic seizures. (C) 2009 Wiley-Liss, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The multiple memory systems theory proposes that the hippocampus and the dorsolateral striatum are the core structures of the spatial/relational and stimulus-response (S-R) memory systems, respectively. This theory is supported by double dissociation studies showing that the spatial and cue (S-R) versions of the Morris water maze are impaired by lesions in the dorsal hippocarnpus and dorsal striatum, respectively. In the present study we further investigated whether adult male Wistar rats bearing double and bilateral electrolytic lesions in the dorsal hippocampus and dorsolateral striatum were as impaired as rats bearing single lesions in just one of these structures in learning both versions of the water maze. Such a prediction, based on the multiple memory systems theory, was not confirmed. Compared to the controls, the animals with double lesions exhibited no improvement at all in the spatial version and learned the cued version very slowly. These results suggest that, instead of independent systems competing for holding control over navigational behaviour, the hippocampus and dorsal striatum both play critical roles in navigation based on spatial or cue-based strategies. (C) 2011 Elsevier B.V. All rights reserved.