984 resultados para Query processing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Query-by-Example Spoken Term Detection (QbE STD) aims at retrieving data from a speech data repository given an acoustic query containing the term of interest as input. Nowadays, it has been receiving much interest due to the high volume of information stored in audio or audiovisual format. QbE STD differs from automatic speech recognition (ASR) and keyword spotting (KWS)/spoken term detection (STD) since ASR is interested in all the terms/words that appear in the speech signal and KWS/STD relies on a textual transcription of the search term to retrieve the speech data. This paper presents the systems submitted to the ALBAYZIN 2012 QbE STD evaluation held as a part of ALBAYZIN 2012 evaluation campaign within the context of the IberSPEECH 2012 Conference(a). The evaluation consists of retrieving the speech files that contain the input queries, indicating their start and end timestamps within the appropriate speech file. Evaluation is conducted on a Spanish spontaneous speech database containing a set of talks from MAVIR workshops(b), which amount at about 7 h of speech in total. We present the database metric systems submitted along with all results and some discussion. Four different research groups took part in the evaluation. Evaluation results show the difficulty of this task and the limited performance indicates there is still a lot of room for improvement. The best result is achieved by a dynamic time warping-based search over Gaussian posteriorgrams/posterior phoneme probabilities. This paper also compares the systems aiming at establishing the best technique dealing with that difficult task and looking for defining promising directions for this relatively novel task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Web databases are now pervasive. Such a database can be accessed via its query interface (usually HTML query form) only. Extracting Web query interfaces is a critical step in data integration across multiple Web databases, which creates a formal representation of a query form by extracting a set of query conditions in it. This paper presents a novel approach to extracting Web query interfaces. In this approach, a generic set of query condition rules are created to define query conditions that are semantically equivalent to SQL search conditions. Query condition rules represent the semantic roles that labels and form elements play in query conditions, and how they are hierarchically grouped into constructs of query conditions. To group labels and form elements in a query form, we explore both their structural proximity in the hierarchy of structures in the query form, which is captured by a tree of nested tags in the HTML codes of the form, and their semantic similarity, which is captured by various short texts used in labels, form elements and their properties. We have implemented the proposed approach and our experimental results show that the approach is highly effective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a novel admission control policy for database queries. Our methodology uses system measurements of CPU utilization and query backlogs to determine interference between queries in execution on the same database server. Query interference may arise due to the concurrent access of hardware and software resources and can affect performance in positive and negative ways. Specifically our admission control considers the mix of jobs in service and prioritizes the query classes consuming CPU resources more efficiently. The policy ignores I/O subsystems and is therefore highly appropriate for in-memory databases. We validate our approach in trace-driven simulation and show performance increases of query slowdowns and throughputs compared to first-come first-served and shortest expected processing time first scheduling. Simulation experiments are parameterized from system traces of a SAP HANA in-memory database installation with TPC-H type workloads. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the proliferation of geo-positioning and geo-tagging techniques, spatio-textual objects that possess both a geographical location and a textual description are gaining in prevalence, and spatial keyword queries that exploit both location and textual description are gaining in prominence. However, the queries studied so far generally focus on finding individual objects that each satisfy a query rather than finding groups of objects where the objects in a group together satisfy a query.

We define the problem of retrieving a group of spatio-textual objects such that the group's keywords cover the query's keywords and such that the objects are nearest to the query location and have the smallest inter-object distances. Specifically, we study three instantiations of this problem, all of which are NP-hard. We devise exact solutions as well as approximate solutions with provable approximation bounds to the problems. In addition, we solve the problems of retrieving top-k groups of three instantiations, and study a weighted version of the problem that incorporates object weights. We present empirical studies that offer insight into the efficiency of the solutions, as well as the accuracy of the approximate solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Massive amount of data that are geo-tagged and associated with text information are being generated at an unprecedented scale. These geo-textual data cover a wide range of topics. Users are interested in receiving up-to-date geo-textual objects (e.g., geo-tagged Tweets) such that their locations meet users’ need and their texts are interesting to users. For example, a user may want to be updated with tweets near her home on the topic “dengue fever headache.” In this demonstration, we present SOPS, the Spatial-Keyword Publish/Subscribe System, that is capable of efficiently processing spatial keyword continuous queries. SOPS supports two types of queries: (1) Boolean Range Continuous (BRC) query that can be used to subscribe the geo-textual objects satisfying a boolean keyword expression and falling in a specified spatial region; (2) Temporal Spatial-Keyword Top-k Continuous (TaSK) query that continuously maintains up-to-date top-k most relevant results over a stream of geo-textual objects. SOPS enables users to formulate their queries and view the real-time results over a stream of geotextual objects by browser-based user interfaces. On the server side, we propose solutions to efficiently processing a large number of BRC queries (tens of millions) and TaSK queries over a stream of geo-textual objects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we study two orthogonal extensions of the classical data mining problem of mining association rules, and show how they naturally interact. The first is the extension from a propositional representation to datalog, and the second is the condensed representation of frequent itemsets by means of Formal Concept Analysis (FCA). We combine the notion of frequent datalog queries with iceberg concept lattices (also called closed itemsets) of FCA and introduce two kinds of iceberg query lattices as condensed representations of frequent datalog queries. We demonstrate that iceberg query lattices provide a natural way to visualize relational association rules in a non-redundant way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Even when data repositories exhibit near perfect data quality, users may formulate queries that do not correspond to the information requested. Users’ poor information retrieval performance may arise from either problems understanding of the data models that represent the real world systems, or their query skills. This research focuses on users’ understanding of the data structures, i.e., their ability to map the information request and the data model. The Bunge-Wand-Weber ontology was used to formulate three sets of hypotheses. Two laboratory experiments (one using a small data model and one using a larger data model) tested the effect of ontological clarity on users’ performance when undertaking component, record, and aggregate level tasks. The results indicate for the hypotheses associated with different representations but equivalent semantics that parsimonious data model participants performed better for component level tasks but that ontologically clearer data model participants performed better for record and aggregate level tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Music similarity query based on acoustic content is becoming important with the ever-increasing growth of the music information from emerging applications such as digital libraries and WWW. However, relative techniques are still in their infancy and much less than satisfactory. In this paper, we present a novel index structure, called Composite Feature tree, CF-tree, to facilitate efficient content-based music search adopting multiple musical features. Before constructing the tree structure, we use PCA to transform the extracted features into a new space sorted by the importance of acoustic features. The CF-tree is a balanced multi-way tree structure where each level represents the data space at different dimensionalities. The PCA transformed data and reduced dimensions in the upper levels can alleviate suffering from dimensionality curse. To accurately mimic human perception, an extension, named CF+-tree, is proposed, which further applies multivariable regression to determine the weight of each individual feature. We conduct extensive experiments to evaluate the proposed structures against state-of-art techniques. The experimental results demonstrate superiority of our technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is a study of performance management of Complex Event Processing (CEP) systems. Since CEP systems have distinct characteristics from other well-studied computer systems such as batch and online transaction processing systems and database-centric applications, these characteristics introduce new challenges and opportunities to the performance management for CEP systems. Methodologies used in benchmarking CEP systems in many performance studies focus on scaling the load injection, but not considering the impact of the functional capabilities of CEP systems. This thesis proposes the approach of evaluating the performance of CEP engines’ functional behaviours on events and develops a benchmark platform for CEP systems: CEPBen. The CEPBen benchmark platform is developed to explore the fundamental functional performance of event processing systems: filtering, transformation and event pattern detection. It is also designed to provide a flexible environment for exploring new metrics and influential factors for CEP systems and evaluating the performance of CEP systems. Studies on factors and new metrics are carried out using the CEPBen benchmark platform on Esper. Different measurement points of response time in performance management of CEP systems are discussed and response time of targeted event is proposed to be used as a metric for quality of service evaluation combining with the traditional response time in CEP systems. Maximum query load as a capacity indicator regarding to the complexity of queries and number of live objects in memory as a performance indicator regarding to the memory management are proposed in performance management of CEP systems. Query depth is studied as a performance factor that influences CEP system performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A search query, being a very concise grounding of user intent, could potentially have many possible interpretations. Search engines hedge their bets by diversifying top results to cover multiple such possibilities so that the user is likely to be satisfied, whatever be her intended interpretation. Diversified Query Expansion is the problem of diversifying query expansion suggestions, so that the user can specialize the query to better suit her intent, even before perusing search results. We propose a method, Select-Link-Rank, that exploits semantic information from Wikipedia to generate diversified query expansions. SLR does collective processing of terms and Wikipedia entities in an integrated framework, simultaneously diversifying query expansions and entity recommendations. SLR starts with selecting informative terms from search results of the initial query, links them to Wikipedia entities, performs a diversity-conscious entity scoring and transfers such scoring to the term space to arrive at query expansion suggestions. Through an extensive empirical analysis and user study, we show that our method outperforms the state-of-the-art diversified query expansion and diversified entity recommendation techniques.