956 resultados para QCD vacuum replicas
Resumo:
An amorphous silicon carbonitride (Si1-x-yCxN y, x = 0:43, y = 0:31) coating was deposited on polyimide substrate using the magnetron-sputtering method. Exposure tests of the coated polyimide in atomic oxygen beam and vacuum ultraviolet radiation were performed in a ground-based simulator. Erosion kinetics measurements indicated that the erosion yield of the Si0.26C0.43N0.31 coating was about 1.5x and 1.8 × 10-26 cm3 /atom during exposure in single atomic oxygen beam, simultaneous atomic oxygen beam, and vacuum ultraviolet radiation, respectively. These values were 2 orders of magnitude lower than that of bare polyimide substrate. Scanning electron and atomic force microscopy, X-ray photoelectron spectrometer, and Fourier transformed infrared spectroscopy investigation indicated that during exposures, an oxide-rich layer composed of SiO2 and minor Si-C-O formed on the surface of the Si 0.26C0.43N0.31 coating, which was the main reason for the excellent resistance to the attacks of atomic oxygen. Moreover, vacuum ultraviolet radiation could promote the breakage of chemical bonds with low binding energy, such as C-N, C = N, and C-C, and enhance atomic oxygen erosion rate slightly.
Resumo:
In this contribution, we discuss a total cross-section model which can be applied to both photon and purely hadronic processes. We find that the model can reproduce photo-production cross-sections, as well as extrapolation of gamma*p processes to gamma p using Vector Meson Dominance models, with minimal modifications from the proton case.
Resumo:
In this contribution, we discuss a total cross-section model which can be applied to both photon and purely hadronic processes. We find that the model can reproduce photo-production cross-sections, as well as extrapolation of gamma*p processes to gamma p using Vector Meson Dominance models, with minimal modifications from the proton case.
Resumo:
The description of quarks and gluons, using the theory of quantum chromodynamics (QCD), has been known for a long time. Nevertheless, many fundamental questions in QCD remain unanswered. This is mainly due to problems in solving the theory at low energies, where the theory is strongly interacting. AdS/CFT is a duality between a specific string theory and a conformal field theory. Duality provides new tools to solve the conformal field theory in the strong coupling regime. There is also some evidence that using the duality, one can get at least qualitative understanding of how QCD behaves at strong coupling. In this thesis, we try to address some issues related to QCD and heavy ion collisions, applying the duality in various ways.
Resumo:
Quantum chromodynamics (QCD) is the theory describing interaction between quarks and gluons. At low temperatures, quarks are confined forming hadrons, e.g. protons and neutrons. However, at extremely high temperatures the hadrons break apart and the matter transforms into plasma of individual quarks and gluons. In this theses the quark gluon plasma (QGP) phase of QCD is studied using lattice techniques in the framework of dimensionally reduced effective theories EQCD and MQCD. Two quantities are in particular interest: the pressure (or grand potential) and the quark number susceptibility. At high temperatures the pressure admits a generalised coupling constant expansion, where some coefficients are non-perturbative. We determine the first such contribution of order g^6 by performing lattice simulations in MQCD. This requires high precision lattice calculations, which we perform with different number of colors N_c to obtain N_c-dependence on the coefficient. The quark number susceptibility is studied by performing lattice simulations in EQCD. We measure both flavor singlet (diagonal) and non-singlet (off-diagonal) quark number susceptibilities. The finite chemical potential results are optained using analytic continuation. The diagonal susceptibility approaches the perturbative result above 20T_c$, but below that temperature we observe significant deviations. The results agree well with 4d lattice data down to temperatures 2T_c.
Resumo:
When heated to high temperatures, the behavior of matter changes dramatically. The standard model fields go through phase transitions, where the strongly interacting quarks and gluons are liberated from their confinement to hadrons, and the Higgs field condensate melts, restoring the electroweak symmetry. The theoretical framework for describing matter at these extreme conditions is thermal field theory, combining relativistic field theory and quantum statistical mechanics. For static observables the physics is simplified at very high temperatures, and an effective three-dimensional theory can be used instead of the full four-dimensional one via a method called dimensional reduction. In this thesis dimensional reduction is applied to two distinct problems, the pressure of electroweak theory and the screening masses of mesonic operators in quantum chromodynamics (QCD). The introductory part contains a brief review of finite-temperature field theory, dimensional reduction and the central results, while the details of the computations are contained in the original research papers. The electroweak pressure is shown to converge well to a value slightly below the ideal gas result, whereas the pressure of the full standard model is dominated by the QCD pressure with worse convergence properties. For the mesonic screening masses a small positive perturbative correction is found, and the interpretation of dimensional reduction on the fermionic sector is discussed.
Resumo:
We study effective models of chiral fields and Polyakov loop expected to describe the dynamics responsible for the phase structure of two-flavor QCD at finite temperature and density. We consider chiral sector described either using linear sigma model or Nambu-Jona-Lasinio model and study the phase diagram and determine the location of the critical point as a function of the explicit chiral symmetry breaking (i.e. the bare quark mass $m_q$). We also discuss the possible emergence of the quarkyonic phase in this model.
Resumo:
Following Weisskopf, the kinematics of quantum mechanics is shown to lead to a modified charge distribution for a test electron embedded in the Fermi-Dirac vacuum with interesting consequences.
Resumo:
Describes a simple triggered vacuum gap developed for initiating electric arcs in vacuum which uses the property that the voltage required to breakdown a gap in vacuum in the presence of a solid insulating material is considerably less than the voltage required in the absence of such material. In this triggered vacuum gap a solid insulating material is used in the angular space between the main cathode and the concentric trigger electrode forming the auxiliary gap. Different materials like epoxy resin, Teflon (PTFE) and mica have been used. The trigger voltage was found to vary in the range 560-1840 V. The results with epoxy and Teflon were unsatisfactory because the trigger voltages showed wide scatter and the auxiliary gap was soon bridged by metal particles eroded from the electrodes. Though the trigger voltages required with mica were relatively high, consistent triggering could be obtained for a large number of trials before the auxiliary gap was bridged. This was probably due to better thermal stability of mica as compared with either epoxy or Teflon.
Resumo:
As the study of electrical breakdown phenomena in vacuum systems, gains more importance, a thorough understanding of the breakdown mechanism at high voltages necessitates a chamber for experimental studies. An epoxy-resin chamber has been constructed by casting ring sections which were joined together. The advantages of such a chamber over the conventional metal or glass chamber are given especially as regards the electric field configuration, high voltage lead-in, and the ease of construction. Special facilities can be incorporated while constructing the chamber which makes it more versatile; for example, in pre-breakdown current measurements, electron beam focusing studies, etc.
Resumo:
The problems in measuring thermal emittance by steady?state calorimetric technique have been analyzed. A few suggestions to make it more accurate, simple, and rapid have been discussed and results are presented.
Resumo:
The vacuum ultraviolet circular dichroism spectrum of an isolated 4 → 1 hydrogen bonded β-turn is reported. The observed spectrum of N-acetyl-Pro-Gly-Leu-OH at − 40°C in trifluoroethanol is in good agreement with the theoretically calculated CD spectrum of the β-turn conformation. This spectrum, particularly the presence of a strong negative band around 180 nm and a large ratio [θ]201/[θ]225, can be taken as a characteristic feature of the isolated β-turn conformation. These CD spectral features can thus be used to distinguish the β-turn conformation from the β-structure in solution.
Resumo:
A numerical solution for the transient temperature distribution in a cylindrical disc heated on its top surface by a circular source is presented. A finite difference form of the governing equations is solved by the Alternating Direction Implicit (ADI) time marching scheme. This solution has direct applications in analyzing transient electron beam heating of target materials as encountered in the prebreakdown current enhancement and consequent breakdown in high voltage vacuum gaps stressed by alternating and pulsed voltages. The solution provides an estimate of the temperature for pulsed electron beam heating and the size of thermally activated microparticles originating from anode hot spots. The calculated results for a typical 45kV (a.c.) electron beam of radius 2.5 micron indicate that the temperature of such spots can reach melting point and could give rise to microparticles which could initiate breakdown.
Resumo:
We present results for the QCD spectrum and the matrix elements of scalar and axial-vector densities at β=6/g2=5.4, 5.5, 5.6. The lattice update was done using the hybrid Monte Carlo algorithm to include two flavors of dynamical Wilson fermions. We have explored quark masses in the range ms≤mq≤3ms. The results for the spectrum are similar to quenched simulations and mass ratios are consistent with phenomenological heavy-quark models. The results for matrix elements of the scalar density show that the contribution of sea quarks is comparable to that of the valence quarks. This has important implications for the pion-nucleon σ term.