926 resultados para QCD sum rules


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have investigated edge modes of different multipolarity sustained by quantum antidots at zero magnetic field. The ground state of the antidot is described within a local-density-functional formalism. Two sum rules, which are exact within this formalism, have been derived and used to evaluate the energy of edge collective modes as a function of the surface density and the size of the antidot.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We explore the ability of the recently established quasilocal density functional theory for describing the isoscalar giant monopole resonance. Within this theory we use the scaling approach and perform constrained calculations for obtaining the cubic and inverse energy weighted moments (sum rules) of the RPA strength. The meaning of the sum rule approach in this case is discussed. Numerical calculations are carried out using Gogny forces and an excellent agreement is found with HF+RPA results previously reported in literature. The nuclear matter compression modulus predicted in our model lies in the range 210230 MeV which agrees with earlier findings. The information provided by the sum rule approach in the case of nuclei near the neutron drip line is also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Force constant and normal co-ordinate calculations are reported for the E species vibrations of the allene molecule. Data on the fundamental vibration frequencies of allene-h4, allene-d4 and allene-1.1-d2 and on the five experimentally determined Coriolis zeta constants of C3H4 and C3D4, were used in a force constant refinement procedure. Allowing for product and sum rules this gives 21 independent data which were used to refine to the most general harmonic force field (10 parameters) with one constraint (in the absence of any constraints the refinement was not satisfactory). The results have been used to calculate the complete ζz Coriolis interaction matrix for the allene-1.1-d2 molecule, and hence to calculate the expected rotational structure of the perpendicular bending vibrations of this molecule; the good agreement obtained with the observed spectra is a check on our results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The climate belongs to the class of non-equilibrium forced and dissipative systems, for which most results of quasi-equilibrium statistical mechanics, including the fluctuation-dissipation theorem, do not apply. In this paper we show for the first time how the Ruelle linear response theory, developed for studying rigorously the impact of perturbations on general observables of non-equilibrium statistical mechanical systems, can be applied with great success to analyze the climatic response to general forcings. The crucial value of the Ruelle theory lies in the fact that it allows to compute the response of the system in terms of expectation values of explicit and computable functions of the phase space averaged over the invariant measure of the unperturbed state. We choose as test bed a classical version of the Lorenz 96 model, which, in spite of its simplicity, has a well-recognized prototypical value as it is a spatially extended one-dimensional model and presents the basic ingredients, such as dissipation, advection and the presence of an external forcing, of the actual atmosphere. We recapitulate the main aspects of the general response theory and propose some new general results. We then analyze the frequency dependence of the response of both local and global observables to perturbations having localized as well as global spatial patterns. We derive analytically several properties of the corresponding susceptibilities, such as asymptotic behavior, validity of Kramers-Kronig relations, and sum rules, whose main ingredient is the causality principle. We show that all the coefficients of the leading asymptotic expansions as well as the integral constraints can be written as linear function of parameters that describe the unperturbed properties of the system, such as its average energy. Some newly obtained empirical closure equations for such parameters allow to define such properties as an explicit function of the unperturbed forcing parameter alone for a general class of chaotic Lorenz 96 models. We then verify the theoretical predictions from the outputs of the simulations up to a high degree of precision. The theory is used to explain differences in the response of local and global observables, to define the intensive properties of the system, which do not depend on the spatial resolution of the Lorenz 96 model, and to generalize the concept of climate sensitivity to all time scales. We also show how to reconstruct the linear Green function, which maps perturbations of general time patterns into changes in the expectation value of the considered observable for finite as well as infinite time. Finally, we propose a simple yet general methodology to study general Climate Change problems on virtually any time scale by resorting to only well selected simulations, and by taking full advantage of ensemble methods. The specific case of globally averaged surface temperature response to a general pattern of change of the CO2 concentration is discussed. We believe that the proposed approach may constitute a mathematically rigorous and practically very effective way to approach the problem of climate sensitivity, climate prediction, and climate change from a radically new perspective.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the general response theory recently proposed by Ruelle for describing the impact of small perturbations to the non-equilibrium steady states resulting from Axiom A dynamical systems. We show that the causality of the response functions entails the possibility of writing a set of Kramers-Kronig (K-K) relations for the corresponding susceptibilities at all orders of nonlinearity. Nonetheless, only a special class of directly observable susceptibilities obey K-K relations. Specific results are provided for the case of arbitrary order harmonic response, which allows for a very comprehensive K-K analysis and the establishment of sum rules connecting the asymptotic behavior of the harmonic generation susceptibility to the short-time response of the perturbed system. These results set in a more general theoretical framework previous findings obtained for optical systems and simple mechanical models, and shed light on the very general impact of considering the principle of causality for testing self-consistency: the described dispersion relations constitute unavoidable benchmarks that any experimental and model generated dataset must obey. The theory exposed in the present paper is dual to the time-dependent theory of perturbations to equilibrium states and to non-equilibrium steady states, and has in principle similar range of applicability and limitations. In order to connect the equilibrium and the non equilibrium steady state case, we show how to rewrite the classical response theory by Kubo so that response functions formally identical to those proposed by Ruelle, apart from the measure involved in the phase space integration, are obtained. These results, taking into account the chaotic hypothesis by Gallavotti and Cohen, might be relevant in several fields, including climate research. In particular, whereas the fluctuation-dissipation theorem does not work for non-equilibrium systems, because of the non-equivalence between internal and external fluctuations, K-K relations might be robust tools for the definition of a self-consistent theory of climate change.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Along the lines of the nonlinear response theory developed by Ruelle, in a previous paper we have proved under rather general conditions that Kramers-Kronig dispersion relations and sum rules apply for a class of susceptibilities describing at any order of perturbation the response of Axiom A non equilibrium steady state systems to weak monochromatic forcings. We present here the first evidence of the validity of these integral relations for the linear and the second harmonic response for the perturbed Lorenz 63 system, by showing that numerical simulations agree up to high degree of accuracy with the theoretical predictions. Some new theoretical results, showing how to derive asymptotic behaviors and how to obtain recursively harmonic generation susceptibilities for general observables, are also presented. Our findings confirm the conceptual validity of the nonlinear response theory, suggest that the theory can be extended for more general non equilibrium steady state systems, and shed new light on the applicability of very general tools, based only upon the principle of causality, for diagnosing the behavior of perturbed chaotic systems and reconstructing their output signals, in situations where the fluctuation-dissipation relation is not of great help.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

After incorporating f(R) gravity into the general braneworld sum rules scope, it is shown that some particular class of warped five-dimensional nonlinear braneworld models, which may be interesting for the hierarchy problem solution, still require a negative tension brane. For other classes of warp factors (suitable and not suitable for approaching the hierarchy problem) any negative brane tension in the compactification scheme is not necessary. In this vein, it is argued that, in the bulk f(R) gravity context, some types of warp factors may be useful for approaching the hierarchy problem and for evading the necessity of a negative brane tension in the compactification scheme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The recently introduced dressed coordinates are studied in the path-integral approach. These coordinates are defined in the context of a harmonic oscillator linearly coupled to massless scalar field and it is shown that in this model the dressed coordinates appear as a coordinate transformation preserving the path-integral functional measure. The analysis also generalizes the sum rules established in a previous work. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The baryon coupling to its current (λB), in conventional QCD sum rule calculations (QCDSR), is shown to scale as the cubic power of the baryon mass, MB. Some theoretical justification for it comes from a simple light-cone model and also general scaling arguments for QCD. But more importantly, taken as a phenomenological ansatz for the present, this may find very good use in current explorations of possible applications of QCDSR to baryon physics both at temperature T = 0, T ≠ 0 and/or density ρ = 0, ρ ≠ 0. © World Scientific Publishing Company.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present predictions for the spin structure functions of the proton in the framework of a unitary isobar model for one-pion photo- and electroproduction. Our results are compared with recent experimental data from SLAC. The first moments of the calculated structure functions fullfil the Gerasimov-Drell-Hearn and Burkhardt-Cottingham sum rules within an error of typically 5-10%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work we provide simple and precise parametrizations of the existing πK scattering data from threshold up to 1.6 GeV, which are constrained to satisfy forward dispersion relations as well as three additional threshold sum rules. We also provide phenomenological values of the threshold parameters and of the resonance poles that appear in elastic scattering.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a study where the energy loss function of Ta2O5, initially derived in the optical limit for a limited region of excitation energies from reflection electron energy loss spectroscopy (REELS) measurements, was improved and extended to the whole momentum and energy excitation region through a suitable theoretical analysis using the Mermin dielectric function and requiring the fulfillment of physically motivated restrictions, such as the f- and KK-sum rules. The material stopping cross section (SCS) and energy-loss straggling measured for 300–2000 keV proton and 200–6000 keV helium ion beams by means of Rutherford backscattering spectrometry (RBS) were compared to the same quantities calculated in the dielectric framework, showing an excellent agreement, which is used to judge the reliability of the Ta2O5 energy loss function. Based on this assessment, we have also predicted the inelastic mean free path and the SCS of energetic electrons in Ta2O5.